
matrix_expand

August 4, 2024

This file is part of CasADi.

CasADi -- A symbolic framework for dynamic optimization.
Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,

KU Leuven. All rights reserved.
Copyright (C) 2011-2014 Greg Horn

CasADi is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

CasADi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with CasADi; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

[1]: from casadi import *
from casadi.tools import *

Let’s revisit briefly the difference between SX and MX

[2]: a = MX.sym("a",2,2)
b = MX.sym("b",2,2)
c = MX.sym("c",2,2)

[3]: d = a+b
e = d*c

The element-wise addition and multiplication operators appear just as a single node in the MX
expression graph

[4]: dotdraw(e)

1



We can use expand to expand into subexpressions

[5]: f = Function("f", [a,b,c],[e])
g = f.expand('g')
dotdraw(g(*g.sx_in()))

2



There is also a variant to perform expansion immediately on the MX graph The expanded SX
graph is hidden inside an SX graph call

[6]: dotdraw(matrix_expand(e))

3



An additional features of this variant is that one can choose which expressions remin outside of the
expansion scope. In the following we list ‘a+b=d’ as a node on the boundary of expansion:

[7]: dotdraw(matrix_expand(e,[d]))

Note how the additions is not expanded, while the multiplication ended up in the expression

4


