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[1]: from casadi import *
from casadi.tools import *

Let’s revisit briefly the difference between SX and MX

[2]: a = MX.sym("a",2,2)
b = MX.sym("b",2,2)
c = MX.sym("c",2,2)

[3]: d = a+b
e = d*c

The element-wise addition and multiplication operators appear just as a single node in the MX
expression graph

[4]: dotdraw(e)
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We can use expand to expand into subexpressions

[5]: f = Function("f", [a,b,c],[e])
g = f.expand('g')
dotdraw(g(*g.sx_in()))
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There is also a variant to perform expansion immediately on the MX graph The expanded SX
graph is hidden inside an SX graph call

[6]: dotdraw(matrix_expand(e))
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An additional features of this variant is that one can choose which expressions remin outside of the
expansion scope. In the following we list ‘a+b=d’ as a node on the boundary of expansion:

[7]: dotdraw(matrix_expand(e,[d]))

Note how the additions is not expanded, while the multiplication ended up in the expression
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