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1 Linear solvers
We demonstrate solving a dense system A.x=b by using different linear solvers.

[1]: from casadi import *
from numpy import *
import time

[2]: n=100

We generate 𝐴 ∈ R𝑛×𝑛, 𝑥 ∈ R𝑛 with 𝑛 = 100
[3]: A=DM([[cos(i*j)-sin(i) for i in range(n)] for j in range(n)])

x=DM([tan(i) for i in range(n)])

We generate the b vector:

[4]: b= mtimes(A,x)
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Commented out pendling completion #1615

2 We demonstrate the LinearSolver API with CSparse:
s = LinearSolver(“s”, “csparse”, A.sparsity())

3 Give it the matrix A
s.setInput(A,“A”) # Do the LU factorization s.prepare()

4 Give it the matrix b
s.setInput(b,“B”)

5 And we are off to find x…
s.solve()

x_ = s.getOutput(“X”)

6 By looking at the residuals between the x we knew in advance
and the computed x, we see that the CSparse solver works

print “Sum of residuals = %.2e” % norm_1(x-x_)

7 Comparison of different linear solvers

8 ======================================
for solver in (“lapacklu”,“lapackqr”,“csparse”): s = LinearSolver(“s”, solver, A.sparsity()) # We
create a solver

s.setInput(A,“A”) # Give it the matrix A

t0 = time.time() for i in range(100): s.prepare() # Do the LU factorization pt = (time.time()-
t0)/100

s.setInput(b,“B”) # Give it the matrix b

t0 = time.time() for i in range(100): s.solve() st = (time.time()-t0)/100

x_ = s.getOutput(“X”)

print ”” print solver print “=” * 10 print “Sum of residuals = %.2e” % norm_1(x-x_) print “Prepa-
ration time = %0.2f ms” % (pt1000) print “Solve time = %0.2f ms” % (st1000) assert(norm_1(x-
x_)<1e-9)

9 Note that these
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