
idas

August 4, 2024

This file is part of CasADi.

CasADi -- A symbolic framework for dynamic optimization.
Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,

KU Leuven. All rights reserved.
Copyright (C) 2011-2014 Greg Horn

CasADi is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

CasADi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with CasADi; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

1 IDAS integrator
We solve a system ̇𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡), 𝑡) 0 = 𝑔(𝑥(𝑡), 𝑦(𝑡), 𝑡)

[1]: from casadi import *
from numpy import *
from pylab import *

We solve the following simple dae system that describes the dynamics of a pendulum: x’ = u, y’ =
v, u’ = lambda * x, v’ =lambda * y - g s.t. x2+y2 = L

We retain g and L as parameters http://en.wikipedia.org/wiki/Differential_algebraic_equation#Examples

[2]: L = SX.sym("L")
g = SX.sym("g")

differential states

1



[3]: x=SX.sym("x")
y=SX.sym("y")
u=SX.sym("u")
v=SX.sym("v")

algebraic states

[4]: lambd=SX.sym("lambda")

All states and parameters

[5]: x_all = vertcat(x,u,y,v)
z_all = lambd
p_all = vertcat(L,g)

the initial state of the pendulum

[6]: P_ = [5,10] # parameters
X_ = [3,-1.0/3,4,1.0/4] # differential states
XDOT_ = [-1.0/3,1147.0/240,1.0/4,-653.0/180] # state derivatives
Z_ = [1147.0/720] # algebraic state

We construct the DAE system

[7]: ode = vertcat(u,lambd*x,v,lambd*y+g)
alg = x**2+y**2-L**2
dae = {'x':x_all, 'z':z_all, 'p':p_all, 'ode':ode, 'alg':alg}
f = Function('f', [x_all, z_all, p_all], [ode, alg], ['x', 'z', 'p'], ['ode',␣

↪'alg'])

Let’s check we have consistent initial conditions:

[8]: res = f(p=P_, x=X_, z=Z_)
print(res['ode']) # This should be same as XDOT_
print(res['alg']) # This should be all zeros

[-0.333333, 4.77917, 0.25, 16.3722]
0

Let’s check our jacobian 𝑑𝑔
𝑑𝑦 :

[9]: j = jacobian(alg,lambd)
print(j)

00

Note that the jacobian is not invertible: it is not of DAE-index 1

This system is not solvable with idas, because it is of DAE-index 3. It is impossible to lambda from
the last element of the residual.

2



We create a DAE system solver

[10]: I = integrator('I', 'idas', dae, {'calc_ic':False, 'init_xdot':XDOT_})

This system is not solvable with idas, because it is of DAE-index 3. It is impossible obtain lambda
from the last element of the residual.

[11]: try:
I(p=P_, x0=X_, z0=Z_)

except Exception as e:
print(e)

Error in Function::call for 'I' [IdasInterface] at
…/casadi/core/function.cpp:1432:
Error in Function::call for 'I' [IdasInterface] at
…/casadi/core/function.cpp:361:
…/casadi/interfaces/sundials/idas_interface.cpp:596: IDASolve returned
"IDA_CONV_FAIL". Consult IDAS documentation.

At t = 0 and h = 5.40977e-14, the corrector convergence failed repeatedly or
with |h| = hmin.

We construct a reworked version od the DAE (index reduced), now it is DAE-index 1

[12]: ode = vertcat(u,lambd*x)
alg = vertcat(x**2+y**2-L**2, u*x+v*y,u**2-g*y+v**2+L**2*lambd)
x_all = vertcat(x,u)
z_all = vertcat(y,v,lambd)
dae = {'x':x_all, 'z':z_all, 'p':p_all, 'ode':ode, 'alg':alg}
f = Function('f', [x_all, z_all, p_all], [ode, alg], ['x', 'z', 'p'], ['ode',␣

↪'alg'])

the initial state of the pendulum

[13]: P_ = [5,10] # parameters
X_ = [3,-1.0/3] # differential states
XDOT_ = [-1.0/3,1147.0/240] # state derivatives
Z_ = [4,1.0/4,1147.0/720] # algebraic state

Let’s check we have consistent initial conditions:

[14]: res = f(p=P_, x=X_, z=Z_)
print(res['ode']) # This should be the same as XDOT_
print(res['alg']) # This should be all zeros

[-0.333333, 4.77917]
[0, 0, 0]

Let’s check our jacobian:

3



[15]: J = f.factory('J', f.name_in(), ['jac:alg:z'])
res = J(p=P_, x=X_, z=Z_)
print(array(res["jac_alg_z"]))

[[ 8. 0. 0. ]
[ 0.25 4. 0. ]
[-10. 0.5 25. ]]

𝑑𝑔
𝑑𝑦 is invertible this time.

We create a DAE system solver

[16]: I = integrator('I', 'idas', dae, {'t0':0, 'tf':1, 'init_xdot':XDOT_})
res = I(p=P_, x0=X_, z0=Z_)
print(res['xf'])

[4.68624, 2.34688]

CasADi - 2024-08-04 10:58:43 WARNING("The options 't0', 'tf', 'grid' and
'output_t0' have been deprecated.
The same functionality is provided by providing additional input arguments to
the 'integrator' function, in particular:
* Call integrator(…, t0, tf, options) for a single output time, or
* Call integrator(…, t0, grid, options) for multiple grid points.
The legacy 'output_t0' option can be emulated by including or excluding 't0' in
'grid'.
Backwards compatibility is provided in this release only.")
[…/casadi/core/integrator.cpp:515]

2 Possible problems
If you would initialize with:

[17]: P_ = [5,10] # parameters
X_ = [5,0] # states

You will get an error:

[18]: try:
I(p=P_, x0=X_, z0=Z_)

except Exception as e:
print(e)

Although this initialisation is consistent, it coincides with a singular point.

4


	IDAS integrator
	Possible problems

