[1]:

[2]:

[3]:

[4]:

[5]:

assertion

August 4, 2024

This file is part of CasADi.

CasADi -- A symbolic framework for dynamic optimization.

Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,
KU Leuven. All rights reserved.

Copyright (C) 2011-2014 Greg Horn

CasADi is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

CasADi is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with CasADi; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 TUSA

from casadi import x*

CasADi provides a mechanism to add assertions in an MX expression graph This can be useful to
debug yor code, e.g. debugging why the end-result of a computation yields NaN

Consider this example:

x = MX.sym("x")

y = sin(x)

z = sqrt(y)

f = Function("f", [x], [z])
z0 = £(5)

print (z0)

-nan



For some mysterious reason we get NaN here

Next, we add an assertion:

[6]:|y = y.attachAssert(y>0, "bummer") # Add assertion here
z = sqrt(y)

[7]: f = Function("f", [x],[z])

[8]: try:

z0 = £(5)

except Exception as e:
print("An exception was raised here:")
print(e)

An exception was raised here:

Error in Function::call for 'f' [MXFunction] at
../casadi/core/function.cpp:361:
../casadi/core/assertion.cpp:70: Assertion error: bummer

You can combine this with Callback to do powerful assertions

[9]: class Dummy(Callback):

def __init__(self, name, opts={}):
Callback. _init__(self)
self.construct(name, opts)

def get_n_in(self): return 1

def get_n_out(self): return 1

def eval(self, arg):
import numpy
x = argl0]
m = max(numpy.real (numpy.linalg.eig(blockcat([[x,-1],[-1,2]1]1))[0]1))
print ("m=",m)
return [int(m>2)]

[10]: foo = Dummy("foo")
[11]: y = sin(x)

[12]: y = y.attachAssert(foo(y), "you are in trouble") # Add assertion here
z = sqrt(y)

[13]: £ = Function("f", [x],[z])
[14]: z0 = £(5)

m= 2.3062613059254473



