
printme

September 30, 2024

This file is part of CasADi.

CasADi -- A symbolic framework for dynamic optimization.
Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,

KU Leuven. All rights reserved.
Copyright (C) 2011-2014 Greg Horn

CasADi is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

CasADi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with CasADi; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

[1]: from casadi import *

[2]: a = SX.sym("a")
b = SX.sym("b")

[3]: c = a+b
c = c.printme(13)

[4]: d = c**2

[5]: print(d)

sq(printme((a+b),13))

[6]: f = Function("f", [a,b],[d])

When the graph is evaluated, a printout of c will occur (if you have set WITH_PRINTME to ON
in CMakeCache.txt) Printout reads ‘|> 13: 7’ 13 is an identifier of choice, 7 is the numerical value

1

of c

[7]: f(4,3)

|> 13 : 7.0000000000000000e+00

[7]: DM(49)

[8]: dd_da = jacobian(d, a)
J = Function('J', [a,b], [dd_da])

The first derivative still depends on c Printout reads ‘|> 13: 11’

[9]: J(2,9)

|> 13 : 1.1000000000000000e+01

[9]: DM(22)

[10]: d2d_da2 = jacobian(dd_da, a)
J = Function('J', [a,b], [d2d_da2])

second derivative doesn’t, so we don’t get a printout

[11]: J(2,9)

[11]: DM(2)

2

