KinsolSolver

September 30, 2024

This file is part of CasADi.

CasADi -- A symbolic framework for dynamic optimization. Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven. All rights reserved. Copyright (C) 2011-2014 Greg Horn

CasADi is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

CasADi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with CasADi; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

1 KinsolSolver

```
[1]: from casadi import *
    from numpy import *
    from pylab import *
```

We will investigate the working of rootfinder with the help of the parametrically exited Duffing equation.

 $\ddot{u} + \dot{u} - \epsilon (2\mu \dot{u} + \alpha u^3 + 2ku\cos(\Omega t))$ with $\Omega = 2 + \epsilon \sigma$.

The first order solution is $u(t) = a\cos(\frac{1}{2}\Omega t - \frac{1}{2}\gamma)$ with the modulation equations: $\langle \frac{da}{d\epsilon t} = -[\mu a + \frac{1}{2}ka\sin\gamma] \langle a\frac{d\gamma}{d\epsilon t} = -[-\sigma a + \frac{3}{4}\alpha a^3 + ka\cos\gamma] \rangle$

We seek the stationair solution to these modulation equations.

Parameters

[2]: eps = SX.sym("eps") mu = SX.sym("mu") alpha = SX.sym("alpha") k = SX.sym("k") sigma = SX.sym("sigma") params = [eps,mu,alpha,k,sigma]

Variables

[3]: a = SX.sym("a")
gamma = SX.sym("gamma")

Equations

```
[4]: res0 = mu*a+1.0/2*k*a*sin(gamma)
res1 = -sigma * a + 3.0/4*alpha*a**3+k*a*cos(gamma)
```

Numerical values

[5]: sigma_ = 0.1
alpha_ = 0.1
k_ = 0.2
params_ = [0.1,0.1,alpha_,k_,sigma_]

We create a Function instance

```
[6]: f=Function("f", [vertcat(a,gamma),vertcat(*params)],[vertcat(res0,res1)])
opts = {}
opts["strategy"] = "linesearch"
opts["abstol"] = 1e-14
```

Require a > 0 and $\gamma < 0$

[7]: opts["constraints"] = [2,-2] s=rootfinder("s", "kinsol", f, opts)

Initialize $[a, \gamma]$ with a guess and solve

```
[8]: x_ = s([1,-1], params_)
print("Solution = ", x_)
```

Solution = [1.1547, -1.5708]

Compare with the analytic solution:

```
[9]: x = [sqrt(4.0/3*sigma_/alpha_),-0.5*pi]
print("Reference solution = ", x)
```

Reference solution = [1.1547005383792515, -1.5707963267948966]

We show that the residual is indeed (close to) zero

[10]: residual = f(x_, params_)
print("residual = ", residual)

```
residual = [4.16334e-15, 8.34363e-15]
```

[11]: for i in range(1):
 assert(abs(x_[i]-x[i])<1e-6)</pre>

Solver statistics

```
[12]: print(s.stats())
```

```
{'n_call_jac_f_z': 0, 'success': True, 't_proc_jac_f_z': 0.0, 't_wall_jac_f_z':
0.0, 'unified_return_status': 'SOLVER_RET_UNKNOWN'}
```