
NewtonImplicitSolver

August 4, 2024

This file is part of CasADi.

CasADi -- A symbolic framework for dynamic optimization.
Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,

KU Leuven. All rights reserved.
Copyright (C) 2011-2014 Greg Horn

CasADi is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

CasADi is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with CasADi; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

1 NewtonImplicitSolver

[1]: from casadi import *
from numpy import *
from pylab import *

We will investigate the working of rootfinder with the help of the parametrically exited Duffing
equation. ! 𝑢̈ + 𝑢̇ − 𝜖(2𝜇𝑢̇ + 𝛼𝑢3 + 2𝑘𝑢 cos(Ω𝑡)) with Ω = 2 + 𝜖𝜎. \

The first order solution is 𝑢(𝑡) = 𝑎 cos(1
2Ω𝑡 − 1

2𝛾) with the modulation equations: \ 𝑑𝑎
𝑑𝜖𝑡 =

− [𝜇𝑎 + 1
2𝑘𝑎 sin 𝛾] \ 𝑎 𝑑𝛾

𝑑𝜖𝑡 = − [−𝜎𝑎 + 3
4𝛼𝑎3 + 𝑘𝑎 cos 𝛾] \

We seek the stationary solution to these modulation equations.

Parameters

[2]: eps = SX.sym("eps")
mu = SX.sym("mu")

1

alpha = SX.sym("alpha")
k = SX.sym("k")
sigma = SX.sym("sigma")
params = [eps,mu,alpha,k,sigma]

Variables

[3]: a = SX.sym("a")
gamma = SX.sym("gamma")

Equations

[4]: res0 = mu*a+1.0/2*k*a*sin(gamma)
res1 = -sigma * a + 3.0/4*alpha*a**3+k*a*cos(gamma)

Numerical values

[5]: sigma_ = 0.1
alpha_ = 0.1
k_ = 0.2
params_ = [0.1,0.1,alpha_,k_,sigma_]

We create a NewtonImplicitSolver instance

[6]: f=Function("f", [vertcat(a,gamma),vertcat(*params)],[vertcat(res0,res1)])
opts = {}
opts["abstol"] = 1e-14
opts["linear_solver"] = "csparse"
s=rootfinder("s", "newton", f, opts)

Initialize [𝑎,𝛾] with a guess and solve

[7]: x_ = s([1,-1], params_)

[8]: print("Solution = ", x_)

Solution = [1.1547, -1.5708]

Compare with the analytic solution:

[9]: x = [sqrt(4.0/3*sigma_/alpha_),-0.5*pi]
print("Reference solution = ", x)

Reference solution = [1.1547005383792515, -1.5707963267948966]

We show that the residual is indeed (close to) zero

[10]: residual = f(x_, params_)
print("residual = ", residual)

residual = [1.29063e-15, 2.62584e-15]

2

[11]: for i in range(1):
assert(abs(x_[i]-x[i])<1e-6)

Solver statistics

[12]: print(s.stats())

{'iter_count': 29, 'n_call_g': 0, 'n_call_jac_f_z': 0, 'return_status':
'success', 'success': True, 't_proc_g': 0.0, 't_proc_jac_f_z': 0.0, 't_wall_g':
0.0, 't_wall_jac_f_z': 0.0, 'unified_return_status': 'SOLVER_RET_UNKNOWN'}

3

	NewtonImplicitSolver

