mx_function.cpp
1 /*
2  * This file is part of CasADi.
3  *
4  * CasADi -- A symbolic framework for dynamic optimization.
5  * Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,
6  * KU Leuven. All rights reserved.
7  * Copyright (C) 2011-2014 Greg Horn
8  *
9  * CasADi is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 3 of the License, or (at your option) any later version.
13  *
14  * CasADi is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with CasADi; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  *
23  */
24 
25 #include "mx_function.hpp"
26 #include "casadi_misc.hpp"
27 #include "casadi_common.hpp"
28 #include "global_options.hpp"
29 #include "casadi_interrupt.hpp"
30 #include "io_instruction.hpp"
31 #include "serializing_stream.hpp"
32 
33 #include <stack>
34 #include <typeinfo>
35 
36 // Throw informative error message
37 #define CASADI_THROW_ERROR(FNAME, WHAT) \
38 throw CasadiException("Error in MXFunction::" FNAME " at " + CASADI_WHERE + ":\n"\
39  + std::string(WHAT));
40 
41 namespace casadi {
42 
43  MXFunction::MXFunction(const std::string& name,
44  const std::vector<MX>& inputv,
45  const std::vector<MX>& outputv,
46  const std::vector<std::string>& name_in,
47  const std::vector<std::string>& name_out) :
48  XFunction<MXFunction, MX, MXNode>(name, inputv, outputv, name_in, name_out) {
49  }
50 
52  clear_mem();
53  }
54 
57  {{"default_in",
59  "Default input values"}},
60  {"live_variables",
61  {OT_BOOL,
62  "Reuse variables in the work vector"}},
63  {"print_instructions",
64  {OT_BOOL,
65  "Print each operation during evaluation. Influenced by print_canonical."}},
66  {"cse",
67  {OT_BOOL,
68  "Perform common subexpression elimination (complexity is N*log(N) in graph size)"}},
69  {"allow_free",
70  {OT_BOOL,
71  "Allow construction with free variables (Default: false)"}},
72  {"allow_duplicate_io_names",
73  {OT_BOOL,
74  "Allow construction with duplicate io names (Default: false)"}}
75  }
76  };
77 
78  Dict MXFunction::generate_options(const std::string& target) const {
80  //opts["default_in"] = default_in_;
81  opts["live_variables"] = live_variables_;
82  opts["print_instructions"] = print_instructions_;
83  return opts;
84  }
85 
86  MX MXFunction::instruction_MX(casadi_int k) const {
87  return algorithm_.at(k).data;
88  }
89 
90  std::vector<casadi_int> MXFunction::instruction_input(casadi_int k) const {
91  auto e = algorithm_.at(k);
92  if (e.op==OP_INPUT) {
93  const IOInstruction* io = static_cast<const IOInstruction*>(e.data.get());
94  return { io->ind() };
95  } else {
96  return e.arg;
97  }
98  }
99 
100  std::vector<casadi_int> MXFunction::instruction_output(casadi_int k) const {
101  auto e = algorithm_.at(k);
102  if (e.op==OP_OUTPUT) {
103  const IOInstruction* io = static_cast<const IOInstruction*>(e.data.get());
104  return { io->ind() };
105  } else {
106  return e.res;
107  }
108  }
109 
110  void MXFunction::init(const Dict& opts) {
111  // Call the init function of the base class
113  if (verbose_) casadi_message(name_ + "::init");
114 
115  // Default (temporary) options
116  live_variables_ = true;
117  print_instructions_ = false;
118  bool cse_opt = false;
119  bool allow_free = false;
120 
121  // Read options
122  for (auto&& op : opts) {
123  if (op.first=="default_in") {
124  default_in_ = op.second;
125  } else if (op.first=="live_variables") {
126  live_variables_ = op.second;
127  } else if (op.first=="print_instructions") {
128  print_instructions_ = op.second;
129  } else if (op.first=="cse") {
130  cse_opt = op.second;
131  } else if (op.first=="allow_free") {
132  allow_free = op.second;
133  }
134  }
135 
136  // Check/set default inputs
137  if (default_in_.empty()) {
138  default_in_.resize(n_in_, 0);
139  } else {
140  casadi_assert(default_in_.size()==n_in_,
141  "Option 'default_in' has incorrect length");
142  }
143 
144  // Check if naked MultiOutput nodes are present
145  for (const MX& e : out_) {
146  casadi_assert(!e->has_output(),
147  "Function output contains MultiOutput nodes. "
148  "You must use get_output() to make a concrete instance.");
149  }
150 
151  if (cse_opt) out_ = cse(out_);
152 
153  // Stack used to sort the computational graph
154  std::stack<MXNode*> s;
155 
156  // All nodes
157  std::vector<MXNode*> nodes;
158 #ifdef CASADI_WITH_THREADSAFE_SYMBOLICS
159  std::lock_guard<std::mutex> lock(MX::get_mutex_temp());
160 #endif // CASADI_WITH_THREADSAFE_SYMBOLICS
161 
162  // Add the list of nodes
163  for (casadi_int ind=0; ind<out_.size(); ++ind) {
164  // Loop over primitives of each output
165  std::vector<MX> prim = out_[ind].primitives();
166  casadi_int nz_offset=0;
167  for (casadi_int p=0; p<prim.size(); ++p) {
168  // Get the nodes using a depth first search
169  s.push(prim[p].get());
170  sort_depth_first(s, nodes);
171  // Add an output instruction ("data" below will take ownership)
172  nodes.push_back(new Output(prim[p], ind, p, nz_offset));
173  // Update offset
174  nz_offset += prim[p].nnz();
175  }
176  }
177 
178  // Set the temporary variables to be the corresponding place in the sorted graph
179  for (casadi_int i=0; i<nodes.size(); ++i) {
180  nodes[i]->temp = i;
181  }
182 
183  // Place in the algorithm for each node
184  std::vector<casadi_int> place_in_alg;
185  place_in_alg.reserve(nodes.size());
186 
187  // Input instructions
188  std::vector<std::pair<casadi_int, MXNode*> > symb_loc;
189 
190  // Count the number of times each node is used
191  std::vector<casadi_int> refcount(nodes.size(), 0);
192 
193  // Get the sequence of instructions for the virtual machine
194  algorithm_.resize(0);
195  algorithm_.reserve(nodes.size());
196  for (MXNode* n : nodes) {
197 
198  // Get the operation
199  casadi_int op = n->op();
200 
201  // Store location if parameter (or input)
202  if (op==OP_PARAMETER) {
203  symb_loc.push_back(std::make_pair(algorithm_.size(), n));
204  }
205 
206  // If a new element in the algorithm needs to be added
207  if (op>=0) {
208  AlgEl ae;
209  ae.op = op;
210  ae.data.own(n);
211  ae.arg.resize(n->n_dep());
212  for (casadi_int i=0; i<n->n_dep(); ++i) {
213  ae.arg[i] = n->dep(i)->temp;
214  }
215  ae.res.resize(n->nout());
216  if (n->has_output()) {
217  std::fill(ae.res.begin(), ae.res.end(), -1);
218  } else if (!ae.res.empty()) {
219  ae.res[0] = n->temp;
220  }
221 
222  // Increase the reference count of the dependencies
223  for (casadi_int c=0; c<ae.arg.size(); ++c) {
224  if (ae.arg[c]>=0) {
225  refcount[ae.arg[c]]++;
226  }
227  }
228 
229  // Save to algorithm
230  place_in_alg.push_back(algorithm_.size());
231  algorithm_.push_back(ae);
232 
233  } else { // Function output node
234  // Get the output index
235  casadi_int oind = n->which_output();
236 
237  // Get the index of the parent node
238  casadi_int pind = place_in_alg[n->dep(0)->temp];
239 
240  // Save location in the algorithm element corresponding to the parent node
241  casadi_int& otmp = algorithm_[pind].res.at(oind);
242  if (otmp<0) {
243  otmp = n->temp; // First time this function output is encountered, save to algorithm
244  } else {
245  n->temp = otmp; // Function output is a duplicate, use the node encountered first
246  }
247 
248  // Not in the algorithm
249  place_in_alg.push_back(-1);
250  }
251  }
252 
253  // Place in the work vector for each of the nodes in the tree (overwrites the reference counter)
254  std::vector<casadi_int>& place = place_in_alg; // Reuse memory as it is no longer needed
255  place.resize(nodes.size());
256 
257  // Stack with unused elements in the work vector, sorted by sparsity pattern
258  SPARSITY_MAP<casadi_int, std::stack<casadi_int> > unused_all;
259 
260  // Work vector size
261  casadi_int worksize = 0;
262 
263  // Find a place in the work vector for the operation
264  for (auto&& e : algorithm_) {
265 
266  // There are two tasks, allocate memory of the result and free the
267  // memory off the arguments, order depends on whether inplace is possible
268  casadi_int first_to_free = 0;
269  casadi_int last_to_free = e.data->n_inplace();
270  for (casadi_int task=0; task<2; ++task) {
271 
272  // Dereference or free the memory of the arguments
273  for (casadi_int c=last_to_free-1; c>=first_to_free; --c) { // reverse order so that the
274  // first argument will end up
275  // at the top of the stack
276 
277  // Index of the argument
278  casadi_int& ch_ind = e.arg[c];
279  if (ch_ind>=0) {
280 
281  // Decrease reference count and add to the stack of
282  // unused variables if the count hits zero
283  casadi_int remaining = --refcount[ch_ind];
284 
285  // Free variable for reuse
286  if (live_variables_ && remaining==0) {
287 
288  // Get a pointer to the sparsity pattern of the argument that can be freed
289  casadi_int nnz = nodes[ch_ind]->sparsity().nnz();
290 
291  // Add to the stack of unused work vector elements for the current sparsity
292  unused_all[nnz].push(place[ch_ind]);
293  }
294 
295  // Point to the place in the work vector instead of to the place in the list of nodes
296  ch_ind = place[ch_ind];
297  }
298  }
299 
300  // Nothing more to allocate
301  if (task==1) break;
302 
303  // Free the rest in the next iteration
304  first_to_free = last_to_free;
305  last_to_free = e.arg.size();
306 
307  // Allocate/reuse memory for the results of the operation
308  for (casadi_int c=0; c<e.res.size(); ++c) {
309  if (e.res[c]>=0) {
310 
311  // Are reuse of variables (live variables) enabled?
312  if (live_variables_) {
313  // Get a pointer to the sparsity pattern node
314  casadi_int nnz = e.data->sparsity(c).nnz();
315 
316  // Get a reference to the stack for the current sparsity
317  std::stack<casadi_int>& unused = unused_all[nnz];
318 
319  // Try to reuse a variable from the stack if possible (last in, first out)
320  if (!unused.empty()) {
321  e.res[c] = place[e.res[c]] = unused.top();
322  unused.pop();
323  continue; // Success, no new element needed in the work vector
324  }
325  }
326 
327  // Allocate a new element in the work vector
328  e.res[c] = place[e.res[c]] = worksize++;
329  }
330  }
331  }
332  }
333 
334  if (verbose_) {
335  if (live_variables_) {
336  casadi_message("Using live variables: work array is " + str(worksize)
337  + " instead of " + str(nodes.size()));
338  } else {
339  casadi_message("Live variables disabled.");
340  }
341  }
342 
343  // Allocate work vectors (numeric)
344  workloc_.resize(worksize+1);
345  std::fill(workloc_.begin(), workloc_.end(), -1);
346  size_t wind=0, sz_w=0;
347  for (auto&& e : algorithm_) {
348  if (e.op!=OP_OUTPUT) {
349  for (casadi_int c=0; c<e.res.size(); ++c) {
350  if (e.res[c]>=0) {
351  alloc_arg(e.data->sz_arg());
352  alloc_res(e.data->sz_res());
353  alloc_iw(e.data->sz_iw());
354  sz_w = std::max(sz_w, e.data->sz_w());
355  if (workloc_[e.res[c]] < 0) {
356  workloc_[e.res[c]] = wind;
357  wind += e.data->sparsity(c).nnz();
358  }
359  }
360  }
361  }
362  }
363  workloc_.back()=wind;
364  for (casadi_int i=0; i<workloc_.size(); ++i) {
365  if (workloc_[i]<0) workloc_[i] = i==0 ? 0 : workloc_[i-1];
366  workloc_[i] += sz_w;
367  }
368  sz_w += wind;
369  alloc_w(sz_w);
370 
371  // Reset the temporary variables
372  for (casadi_int i=0; i<nodes.size(); ++i) {
373  if (nodes[i]) {
374  nodes[i]->temp = 0;
375  }
376  }
377 
378  // Now mark each input's place in the algorithm
379  for (auto it=symb_loc.begin(); it!=symb_loc.end(); ++it) {
380  it->second->temp = it->first+1;
381  }
382 
383  // Add input instructions, loop over inputs
384  for (casadi_int ind=0; ind<in_.size(); ++ind) {
385  // Loop over symbolic primitives of each input
386  std::vector<MX> prim = in_[ind].primitives();
387  casadi_int nz_offset=0;
388  for (casadi_int p=0; p<prim.size(); ++p) {
389  casadi_int i = prim[p].get_temp()-1;
390  if (i>=0) {
391  // Mark read
392  prim[p].set_temp(0);
393 
394  // Replace parameter with input instruction
395  algorithm_[i].data.own(new Input(prim[p].sparsity(), ind, p, nz_offset));
396  algorithm_[i].op = OP_INPUT;
397  }
398  nz_offset += prim[p]->nnz();
399  }
400  }
401 
402  // Locate free variables
403  free_vars_.clear();
404  for (auto it=symb_loc.begin(); it!=symb_loc.end(); ++it) {
405  casadi_int i = it->second->temp-1;
406  if (i>=0) {
407  // Save to list of free parameters
408  free_vars_.push_back(MX::create(it->second));
409 
410  // Remove marker
411  it->second->temp=0;
412  }
413  }
414 
415  if (!allow_free && has_free()) {
416  casadi_error(name_ + "::init: Initialization failed since variables [" +
417  join(get_free(), ", ") + "] are free. These symbols occur in the output expressions "
418  "but you forgot to declare these as inputs. "
419  "Set option 'allow_free' to allow free variables.");
420  }
421 
422  // Does any embedded function have reference counting for codegen?
423  for (auto&& a : algorithm_) {
424  if (a.data->has_refcount()) {
425  has_refcount_ = true;
426  break;
427  }
428  }
429  }
430 
431  int MXFunction::eval(const double** arg, double** res,
432  casadi_int* iw, double* w, void* mem) const {
433  if (verbose_) casadi_message(name_ + "::eval");
434  setup(mem, arg, res, iw, w);
435  // Work vector and temporaries to hold pointers to operation input and outputs
436  const double** arg1 = arg+n_in_;
437  double** res1 = res+n_out_;
438 
439  // Make sure that there are no free variables
440  if (!free_vars_.empty()) {
441  std::stringstream ss;
442  disp(ss, false);
443  casadi_error("Cannot evaluate \"" + ss.str() + "\" since variables "
444  + str(free_vars_) + " are free.");
445  }
446 
447  // Operation number (for printing)
448  casadi_int k = 0;
449 
450  // Evaluate all of the nodes of the algorithm:
451  // should only evaluate nodes that have not yet been calculated!
452  for (auto&& e : algorithm_) {
453  // Perform the operation
454  if (e.op==OP_INPUT) {
455  // Pass an input
456  double *w1 = w+workloc_[e.res.front()];
457  casadi_int nnz=e.data.nnz();
458  casadi_int i=e.data->ind();
459  casadi_int nz_offset=e.data->offset();
460  if (arg[i]==nullptr) {
461  std::fill(w1, w1+nnz, 0);
462  } else {
463  std::copy(arg[i]+nz_offset, arg[i]+nz_offset+nnz, w1);
464  }
465  } else if (e.op==OP_OUTPUT) {
466  // Get an output
467  double *w1 = w+workloc_[e.arg.front()];
468  casadi_int nnz=e.data->dep().nnz();
469  casadi_int i=e.data->ind();
470  casadi_int nz_offset=e.data->offset();
471  if (res[i]) std::copy(w1, w1+nnz, res[i]+nz_offset);
472  } else {
473  // Point pointers to the data corresponding to the element
474  for (casadi_int i=0; i<e.arg.size(); ++i)
475  arg1[i] = e.arg[i]>=0 ? w+workloc_[e.arg[i]] : nullptr;
476  for (casadi_int i=0; i<e.res.size(); ++i)
477  res1[i] = e.res[i]>=0 ? w+workloc_[e.res[i]] : nullptr;
478 
479  // Evaluate
480  if (print_instructions_) print_arg(uout(), k, e, arg1);
481  if (e.data->eval(arg1, res1, iw, w)) return 1;
482  if (print_instructions_) print_res(uout(), k, e, res1);
483  }
484  // Increase counter
485  k++;
486  }
487  return 0;
488  }
489 
490  std::string MXFunction::print(const AlgEl& el) const {
491  std::stringstream s;
492  if (el.op==OP_OUTPUT) {
493  s << "output[" << el.data->ind() << "][" << el.data->segment() << "]"
494  << " = @" << el.arg.at(0);
495  } else if (el.op==OP_SETNONZEROS || el.op==OP_ADDNONZEROS) {
496  if (el.res.front()!=el.arg.at(0)) {
497  s << "@" << el.res.front() << " = @" << el.arg.at(0) << "; ";
498  }
499  std::vector<std::string> arg(2);
500  arg[0] = "@" + str(el.res.front());
501  arg[1] = "@" + str(el.arg.at(1));
502  s << el.data->disp(arg);
503  } else {
504  if (el.res.size()==1) {
505  s << "@" << el.res.front() << " = ";
506  } else {
507  s << "{";
508  for (casadi_int i=0; i<el.res.size(); ++i) {
509  if (i!=0) s << ", ";
510  if (el.res[i]>=0) {
511  s << "@" << el.res[i];
512  } else {
513  s << "NULL";
514  }
515  }
516  s << "} = ";
517  }
518  std::vector<std::string> arg;
519  if (el.op!=OP_INPUT) {
520  arg.resize(el.arg.size());
521  for (casadi_int i=0; i<el.arg.size(); ++i) {
522  if (el.arg[i]>=0) {
523  arg[i] = "@" + str(el.arg[i]);
524  } else {
525  arg[i] = "NULL";
526  }
527  }
528  }
529  s << el.data->disp(arg);
530  }
531  return s.str();
532  }
533 
534  void MXFunction::print_arg(std::ostream &stream, casadi_int k, const AlgEl& el,
535  const double** arg) const {
536  stream << name_ << ":" << k << ": " << print(el) << " inputs:" << std::endl;
537  for (size_t i = 0; i < el.arg.size(); ++i) {
538  if (arg[i]) {
539  stream << i << ": ";
540  if (print_canonical_) {
541  print_canonical(stream, el.data->dep(i).sparsity(), arg[i]);
542  } else {
543  DM::print_default(stream, el.data->dep(i).sparsity(), arg[i], true);
544  }
545  stream << std::endl;
546  }
547  }
548  }
549 
550  void MXFunction::print_arg(CodeGenerator& g, casadi_int k, const AlgEl& el,
551  const std::vector<casadi_int>& arg, const std::vector<bool>& arg_is_ref) const {
552  g << g.printf(name_ + ":" + str(k) + ": " + print(el) + " inputs:\\n") << "\n";
553  for (size_t i = 0; i < el.arg.size(); ++i) {
554  if (arg[i]>=0) {
555  g << g.printf(str(i) + ": ");
556  std::string a = g.work(arg[i], el.data->dep(i).nnz(), arg_is_ref[i]);
557  g << g.print_canonical(el.data->dep(i).sparsity(), a);
558  g << g.printf("\\n") << "\n";
559  }
560  }
561  }
562 
563  void MXFunction::print_res(CodeGenerator& g, casadi_int k, const AlgEl& el,
564  const std::vector<casadi_int>& res, const std::vector<bool>& res_is_ref) const {
565  g << g.printf(name_ + ":" + str(k) + ": " + print(el) + " outputs:\\n") << "\n";
566  for (size_t i = 0; i < el.res.size(); ++i) {
567  if (res[i]>=0) {
568  g << g.printf(str(i) + ": ");
569  std::string a = g.work(res[i], el.data->sparsity(i).nnz(), res_is_ref[i]);
570  g << g.print_canonical(el.data->sparsity(i), a);
571  g << g.printf("\\n") << "\n";
572  }
573  }
574  }
575 
576  void MXFunction::print_res(std::ostream &stream, casadi_int k, const AlgEl& el,
577  double** res) const {
578  stream << name_ << ":" << k << ": " << print(el) << " outputs:" << std::endl;
579  for (size_t i = 0; i < el.res.size(); ++i) {
580  if (res[i]) {
581  stream << i << ": ";
582  if (print_canonical_) {
583  print_canonical(stream, el.data->sparsity(i), res[i]);
584  } else {
585  DM::print_default(stream, el.data->sparsity(i), res[i], true);
586  }
587  stream << std::endl;
588  }
589  }
590  }
591 
592  void MXFunction::disp_more(std::ostream &stream) const {
593  stream << "Algorithm:";
594  for (auto&& e : algorithm_) {
596  stream << std::endl << print(e);
597  }
598  }
599 
601  sp_forward(const bvec_t** arg, bvec_t** res, casadi_int* iw, bvec_t* w, void* mem) const {
602  // Fall back when forward mode not allowed
603  if (sp_weight()==1 || sp_weight()==-1)
604  return FunctionInternal::sp_forward(arg, res, iw, w, mem);
605  // Temporaries to hold pointers to operation input and outputs
606  const bvec_t** arg1=arg+n_in_;
607  bvec_t** res1=res+n_out_;
608 
609  // Propagate sparsity forward
610  for (auto&& e : algorithm_) {
611  if (e.op==OP_INPUT) {
612  // Pass input seeds
613  casadi_int nnz=e.data.nnz();
614  casadi_int i=e.data->ind();
615  casadi_int nz_offset=e.data->offset();
616  const bvec_t* argi = arg[i];
617  bvec_t* w1 = w + workloc_[e.res.front()];
618  if (argi!=nullptr) {
619  std::copy(argi+nz_offset, argi+nz_offset+nnz, w1);
620  } else {
621  std::fill_n(w1, nnz, 0);
622  }
623  } else if (e.op==OP_OUTPUT) {
624  // Get the output sensitivities
625  casadi_int nnz=e.data.dep().nnz();
626  casadi_int i=e.data->ind();
627  casadi_int nz_offset=e.data->offset();
628  bvec_t* resi = res[i];
629  bvec_t* w1 = w + workloc_[e.arg.front()];
630  if (resi!=nullptr) std::copy(w1, w1+nnz, resi+nz_offset);
631  } else {
632  // Point pointers to the data corresponding to the element
633  for (casadi_int i=0; i<e.arg.size(); ++i)
634  arg1[i] = e.arg[i]>=0 ? w+workloc_[e.arg[i]] : nullptr;
635  for (casadi_int i=0; i<e.res.size(); ++i)
636  res1[i] = e.res[i]>=0 ? w+workloc_[e.res[i]] : nullptr;
637 
638  // Propagate sparsity forwards
639  if (e.data->sp_forward(arg1, res1, iw, w)) return 1;
640  }
641  }
642  return 0;
643  }
644 
646  casadi_int* iw, bvec_t* w, void* mem) const {
647  // Fall back when reverse mode not allowed
648  if (sp_weight()==0 || sp_weight()==-1)
649  return FunctionInternal::sp_reverse(arg, res, iw, w, mem);
650  // Temporaries to hold pointers to operation input and outputs
651  bvec_t** arg1=arg+n_in_;
652  bvec_t** res1=res+n_out_;
653 
654  std::fill_n(w, sz_w(), 0);
655 
656  // Propagate sparsity backwards
657  for (auto it=algorithm_.rbegin(); it!=algorithm_.rend(); it++) {
658  if (it->op==OP_INPUT) {
659  // Get the input sensitivities and clear it from the work vector
660  casadi_int nnz=it->data.nnz();
661  casadi_int i=it->data->ind();
662  casadi_int nz_offset=it->data->offset();
663  bvec_t* argi = arg[i];
664  bvec_t* w1 = w + workloc_[it->res.front()];
665  if (argi!=nullptr) for (casadi_int k=0; k<nnz; ++k) argi[nz_offset+k] |= w1[k];
666  std::fill_n(w1, nnz, 0);
667  } else if (it->op==OP_OUTPUT) {
668  // Pass output seeds
669  casadi_int nnz=it->data.dep().nnz();
670  casadi_int i=it->data->ind();
671  casadi_int nz_offset=it->data->offset();
672  bvec_t* resi = res[i] ? res[i] + nz_offset : nullptr;
673  bvec_t* w1 = w + workloc_[it->arg.front()];
674  if (resi!=nullptr) {
675  for (casadi_int k=0; k<nnz; ++k) w1[k] |= resi[k];
676  std::fill_n(resi, nnz, 0);
677 
678  }
679  } else {
680  // Point pointers to the data corresponding to the element
681  for (casadi_int i=0; i<it->arg.size(); ++i)
682  arg1[i] = it->arg[i]>=0 ? w+workloc_[it->arg[i]] : nullptr;
683  for (casadi_int i=0; i<it->res.size(); ++i)
684  res1[i] = it->res[i]>=0 ? w+workloc_[it->res[i]] : nullptr;
685 
686  // Propagate sparsity backwards
687  if (it->data->sp_reverse(arg1, res1, iw, w)) return 1;
688  }
689  }
690  return 0;
691  }
692 
693  std::vector<MX> MXFunction::symbolic_output(const std::vector<MX>& arg) const {
694  // Check if input is given
695  const casadi_int checking_depth = 2;
696  bool input_given = true;
697  for (casadi_int i=0; i<arg.size() && input_given; ++i) {
698  if (!is_equal(arg[i], in_[i], checking_depth)) {
699  input_given = false;
700  }
701  }
702 
703  // Return output if possible, else fall back to base class
704  if (input_given) {
705  return out_;
706  } else {
708  }
709  }
710 
711  void MXFunction::eval_mx(const MXVector& arg, MXVector& res,
712  bool always_inline, bool never_inline) const {
713  always_inline = always_inline || always_inline_;
714  never_inline = never_inline || never_inline_;
715  if (verbose_) casadi_message(name_ + "::eval_mx");
716  try {
717  // Resize the number of outputs
718  casadi_assert(arg.size()==n_in_, "Wrong number of input arguments");
719  res.resize(out_.size());
720 
721  // Trivial inline by default if output known
722  if (!never_inline && isInput(arg)) {
723  std::copy(out_.begin(), out_.end(), res.begin());
724  return;
725  }
726 
727  // non-inlining call is implemented in the base-class
728  if (!should_inline(false, always_inline, never_inline)) {
729  return FunctionInternal::eval_mx(arg, res, false, true);
730  }
731 
732  // Symbolic work, non-differentiated
733  std::vector<MX> swork(workloc_.size()-1);
734  if (verbose_) casadi_message("Allocated work vector");
735 
736  // Split up inputs analogous to symbolic primitives
737  std::vector<std::vector<MX> > arg_split(in_.size());
738  for (casadi_int i=0; i<in_.size(); ++i) arg_split[i] = in_[i].split_primitives(arg[i]);
739 
740  // Allocate storage for split outputs
741  std::vector<std::vector<MX> > res_split(out_.size());
742  for (casadi_int i=0; i<out_.size(); ++i) res_split[i].resize(out_[i].n_primitives());
743 
744  std::vector<MX> arg1, res1;
745 
746  // Loop over computational nodes in forward order
747  casadi_int alg_counter = 0;
748  for (auto it=algorithm_.begin(); it!=algorithm_.end(); ++it, ++alg_counter) {
749  if (it->op == OP_INPUT) {
750  swork[it->res.front()] = project(arg_split.at(it->data->ind()).at(it->data->segment()),
751  it->data.sparsity(), true);
752  } else if (it->op==OP_OUTPUT) {
753  // Collect the results
754  res_split.at(it->data->ind()).at(it->data->segment()) = swork[it->arg.front()];
755  } else if (it->op==OP_PARAMETER) {
756  // Fetch parameter
757  swork[it->res.front()] = it->data;
758  } else {
759  // Arguments of the operation
760  arg1.resize(it->arg.size());
761  for (casadi_int i=0; i<arg1.size(); ++i) {
762  casadi_int el = it->arg[i]; // index of the argument
763  arg1[i] = el<0 ? MX(it->data->dep(i).size()) : swork[el];
764  }
765 
766  // Perform the operation
767  res1.resize(it->res.size());
768  it->data->eval_mx(arg1, res1);
769 
770  // Get the result
771  for (casadi_int i=0; i<res1.size(); ++i) {
772  casadi_int el = it->res[i]; // index of the output
773  if (el>=0) swork[el] = res1[i];
774  }
775  }
776  }
777 
778  // Join split outputs
779  for (casadi_int i=0; i<res.size(); ++i) res[i] = out_[i].join_primitives(res_split[i]);
780  } catch (std::exception& e) {
781  CASADI_THROW_ERROR("eval_mx", e.what());
782  }
783  }
784 
785  void MXFunction::ad_forward(const std::vector<std::vector<MX> >& fseed,
786  std::vector<std::vector<MX> >& fsens) const {
787  if (verbose_) casadi_message(name_ + "::ad_forward(" + str(fseed.size())+ ")");
788  try {
789  // Allocate results
790  casadi_int nfwd = fseed.size();
791  fsens.resize(nfwd);
792  for (casadi_int d=0; d<nfwd; ++d) {
793  fsens[d].resize(n_out_);
794  }
795 
796  // Quick return if no directions
797  if (nfwd==0) return;
798 
799  // Check if seeds need to have dimensions corrected
800  casadi_int npar = 1;
801  for (auto&& r : fseed) {
802  if (!matching_arg(r, npar)) {
803  casadi_assert_dev(npar==1);
804  return ad_forward(replace_fseed(fseed, npar), fsens);
805  }
806  }
807 
808  // Check if there are any zero seeds
809  for (auto&& r : fseed) {
810  if (purgable(r)) {
811  // New argument without all-zero directions
812  std::vector<std::vector<MX> > fseed_purged, fsens_purged;
813  fseed_purged.reserve(nfwd);
814  std::vector<casadi_int> index_purged;
815  for (casadi_int d=0; d<nfwd; ++d) {
816  if (purgable(fseed[d])) {
817  for (casadi_int i=0; i<fsens[d].size(); ++i) {
818  fsens[d][i] = MX(size_out(i));
819  }
820  } else {
821  fseed_purged.push_back(fsens[d]);
822  index_purged.push_back(d);
823  }
824  }
825 
826  // Call recursively
827  ad_forward(fseed_purged, fsens_purged);
828 
829  // Fetch result
830  for (casadi_int d=0; d<fseed_purged.size(); ++d) {
831  fsens[index_purged[d]] = fsens_purged[d];
832  }
833  return;
834  }
835  }
836 
837  if (!enable_forward_) {
838  // Do the non-inlining call from FunctionInternal
839  // NOLINTNEXTLINE(bugprone-parent-virtual-call)
840  FunctionInternal::call_forward(in_, out_, fseed, fsens, false, false);
841  return;
842  }
843 
844  // Work vector, forward derivatives
845  std::vector<std::vector<MX> > dwork(workloc_.size()-1);
846  fill(dwork.begin(), dwork.end(), std::vector<MX>(nfwd));
847  if (verbose_) casadi_message("Allocated derivative work vector (forward mode)");
848 
849  // Split up fseed analogous to symbolic primitives
850  std::vector<std::vector<std::vector<MX>>> fseed_split(nfwd);
851  for (casadi_int d=0; d<nfwd; ++d) {
852  fseed_split[d].resize(fseed[d].size());
853  for (casadi_int i=0; i<fseed[d].size(); ++i) {
854  fseed_split[d][i] = in_[i].split_primitives(fseed[d][i]);
855  }
856  }
857 
858  // Allocate splited forward sensitivities
859  std::vector<std::vector<std::vector<MX>>> fsens_split(nfwd);
860  for (casadi_int d=0; d<nfwd; ++d) {
861  fsens_split[d].resize(out_.size());
862  for (casadi_int i=0; i<out_.size(); ++i) {
863  fsens_split[d][i].resize(out_[i].n_primitives());
864  }
865  }
866 
867  // Pointers to the arguments of the current operation
868  std::vector<std::vector<MX> > oseed, osens;
869  oseed.reserve(nfwd);
870  osens.reserve(nfwd);
871  std::vector<bool> skip(nfwd, false);
872 
873  // Loop over computational nodes in forward order
874  for (auto&& e : algorithm_) {
875  if (e.op == OP_INPUT) {
876  // Fetch forward seed
877  for (casadi_int d=0; d<nfwd; ++d) {
878  dwork[e.res.front()][d] =
879  project(fseed_split[d].at(e.data->ind()).at(e.data->segment()),
880  e.data.sparsity(), true);
881  }
882  } else if (e.op==OP_OUTPUT) {
883  // Collect forward sensitivity
884  for (casadi_int d=0; d<nfwd; ++d) {
885  fsens_split[d][e.data->ind()][e.data->segment()] = dwork[e.arg.front()][d];
886  }
887  } else if (e.op==OP_PARAMETER) {
888  // Fetch parameter
889  for (casadi_int d=0; d<nfwd; ++d) {
890  dwork[e.res.front()][d] = MX();
891  }
892  } else {
893  // Get seeds, ignoring all-zero directions
894  oseed.clear();
895  for (casadi_int d=0; d<nfwd; ++d) {
896  // Collect seeds, skipping directions with only zeros
897  std::vector<MX> seed(e.arg.size());
898  skip[d] = true; // All seeds are zero?
899  for (casadi_int i=0; i<e.arg.size(); ++i) {
900  casadi_int el = e.arg[i];
901  if (el<0 || dwork[el][d].is_empty(true)) {
902  seed[i] = MX(e.data->dep(i).size());
903  } else {
904  seed[i] = dwork[el][d];
905  }
906  if (skip[d] && !seed[i].is_zero()) skip[d] = false;
907  }
908  if (!skip[d]) oseed.push_back(seed);
909  }
910 
911  // Perform the operation
912  osens.resize(oseed.size());
913  if (!osens.empty()) {
914  fill(osens.begin(), osens.end(), std::vector<MX>(e.res.size()));
915  e.data.ad_forward(oseed, osens);
916  }
917 
918  // Store sensitivities
919  casadi_int d1=0;
920  for (casadi_int d=0; d<nfwd; ++d) {
921  for (casadi_int i=0; i<e.res.size(); ++i) {
922  casadi_int el = e.res[i];
923  if (el>=0) {
924  dwork[el][d] = skip[d] ? MX(e.data->sparsity(i).size()) : osens[d1][i];
925  }
926  }
927  if (!skip[d]) d1++;
928  }
929  }
930  }
931 
932  // Get forward sensitivities
933  for (casadi_int d=0; d<nfwd; ++d) {
934  for (casadi_int i=0; i<out_.size(); ++i) {
935  fsens[d][i] = out_[i].join_primitives(fsens_split[d][i]);
936  }
937  }
938  } catch (std::exception& e) {
939  CASADI_THROW_ERROR("ad_forward", e.what());
940  }
941  }
942 
943  void MXFunction::ad_reverse(const std::vector<std::vector<MX> >& aseed,
944  std::vector<std::vector<MX> >& asens) const {
945  if (verbose_) casadi_message(name_ + "::ad_reverse(" + str(aseed.size())+ ")");
946  try {
947 
948  // Allocate results
949  casadi_int nadj = aseed.size();
950  asens.resize(nadj);
951  for (casadi_int d=0; d<nadj; ++d) {
952  asens[d].resize(n_in_);
953  }
954 
955  // Quick return if no directions
956  if (nadj==0) return;
957 
958  // Check if seeds need to have dimensions corrected
959  casadi_int npar = 1;
960  for (auto&& r : aseed) {
961  if (!matching_res(r, npar)) {
962  casadi_assert_dev(npar==1);
963  return ad_reverse(replace_aseed(aseed, npar), asens);
964  }
965  }
966 
967  // Check if there are any zero seeds
968  for (auto&& r : aseed) {
969  // If any direction can be skipped
970  if (purgable(r)) {
971  // New argument without all-zero directions
972  std::vector<std::vector<MX> > aseed_purged, asens_purged;
973  aseed_purged.reserve(nadj);
974  std::vector<casadi_int> index_purged;
975  for (casadi_int d=0; d<nadj; ++d) {
976  if (purgable(aseed[d])) {
977  for (casadi_int i=0; i<asens[d].size(); ++i) {
978  asens[d][i] = MX(size_in(i));
979  }
980  } else {
981  aseed_purged.push_back(asens[d]);
982  index_purged.push_back(d);
983  }
984  }
985 
986  // Call recursively
987  ad_reverse(aseed_purged, asens_purged);
988 
989  // Fetch result
990  for (casadi_int d=0; d<aseed_purged.size(); ++d) {
991  asens[index_purged[d]] = asens_purged[d];
992  }
993  return;
994  }
995  }
996 
997  if (!enable_reverse_) {
998  std::vector<std::vector<MX> > v;
999  // Do the non-inlining call from FunctionInternal
1000  // NOLINTNEXTLINE(bugprone-parent-virtual-call)
1001  FunctionInternal::call_reverse(in_, out_, aseed, v, false, false);
1002  for (casadi_int i=0; i<v.size(); ++i) {
1003  for (casadi_int j=0; j<v[i].size(); ++j) {
1004  if (!v[i][j].is_empty()) { // TODO(@jaeandersson): Hack
1005  if (asens[i][j].is_empty()) {
1006  asens[i][j] = v[i][j];
1007  } else {
1008  asens[i][j] += v[i][j];
1009  }
1010  }
1011  }
1012  }
1013  return;
1014  }
1015 
1016  // Split up aseed analogous to symbolic primitives
1017  std::vector<std::vector<std::vector<MX>>> aseed_split(nadj);
1018  for (casadi_int d=0; d<nadj; ++d) {
1019  aseed_split[d].resize(out_.size());
1020  for (casadi_int i=0; i<out_.size(); ++i) {
1021  aseed_split[d][i] = out_[i].split_primitives(aseed[d][i]);
1022  }
1023  }
1024 
1025  // Allocate splited adjoint sensitivities
1026  std::vector<std::vector<std::vector<MX>>> asens_split(nadj);
1027  for (casadi_int d=0; d<nadj; ++d) {
1028  asens_split[d].resize(in_.size());
1029  for (casadi_int i=0; i<in_.size(); ++i) {
1030  asens_split[d][i].resize(in_[i].n_primitives());
1031  }
1032  }
1033 
1034  // Pointers to the arguments of the current operation
1035  std::vector<std::vector<MX>> oseed, osens;
1036  oseed.reserve(nadj);
1037  osens.reserve(nadj);
1038  std::vector<bool> skip(nadj, false);
1039 
1040  // Work vector, adjoint derivatives
1041  std::vector<std::vector<MX> > dwork(workloc_.size()-1);
1042  fill(dwork.begin(), dwork.end(), std::vector<MX>(nadj));
1043 
1044  // Loop over computational nodes in reverse order
1045  for (auto it=algorithm_.rbegin(); it!=algorithm_.rend(); ++it) {
1046  if (it->op == OP_INPUT) {
1047  // Get the adjoint sensitivities
1048  for (casadi_int d=0; d<nadj; ++d) {
1049  asens_split[d].at(it->data->ind()).at(it->data->segment()) = dwork[it->res.front()][d];
1050  dwork[it->res.front()][d] = MX();
1051  }
1052  } else if (it->op==OP_OUTPUT) {
1053  // Pass the adjoint seeds
1054  for (casadi_int d=0; d<nadj; ++d) {
1055  MX a = project(aseed_split[d].at(it->data->ind()).at(it->data->segment()),
1056  it->data.dep().sparsity(), true);
1057  if (dwork[it->arg.front()][d].is_empty(true)) {
1058  dwork[it->arg.front()][d] = a;
1059  } else {
1060  dwork[it->arg.front()][d] += a;
1061  }
1062  }
1063  } else if (it->op==OP_PARAMETER) {
1064  // Clear adjoint seeds
1065  for (casadi_int d=0; d<nadj; ++d) {
1066  dwork[it->res.front()][d] = MX();
1067  }
1068  } else {
1069  // Collect and reset seeds
1070  oseed.clear();
1071  for (casadi_int d=0; d<nadj; ++d) {
1072  // Can the direction be skipped completely?
1073  skip[d] = true;
1074 
1075  // Seeds for direction d
1076  std::vector<MX> seed(it->res.size());
1077  for (casadi_int i=0; i<it->res.size(); ++i) {
1078  // Get and clear seed
1079  casadi_int el = it->res[i];
1080  if (el>=0) {
1081  seed[i] = dwork[el][d];
1082  dwork[el][d] = MX();
1083  } else {
1084  seed[i] = MX();
1085  }
1086 
1087  // If first time encountered, reset to zero of right dimension
1088  if (seed[i].is_empty(true)) seed[i] = MX(it->data->sparsity(i).size());
1089 
1090  // If nonzero seeds, keep direction
1091  if (skip[d] && !seed[i].is_zero()) skip[d] = false;
1092  }
1093  // Add to list of derivatives
1094  if (!skip[d]) oseed.push_back(seed);
1095  }
1096 
1097  // Get values of sensitivities before addition
1098  osens.resize(oseed.size());
1099  casadi_int d1=0;
1100  for (casadi_int d=0; d<nadj; ++d) {
1101  if (skip[d]) continue;
1102  osens[d1].resize(it->arg.size());
1103  for (casadi_int i=0; i<it->arg.size(); ++i) {
1104  // Pass seed and reset to avoid counting twice
1105  casadi_int el = it->arg[i];
1106  if (el>=0) {
1107  osens[d1][i] = dwork[el][d];
1108  dwork[el][d] = MX();
1109  } else {
1110  osens[d1][i] = MX();
1111  }
1112 
1113  // If first time encountered, reset to zero of right dimension
1114  if (osens[d1][i].is_empty(true)) osens[d1][i] = MX(it->data->dep(i).size());
1115  }
1116  d1++;
1117  }
1118 
1119  // Perform the operation
1120  if (!osens.empty()) {
1121  it->data.ad_reverse(oseed, osens);
1122  }
1123 
1124  // Store sensitivities
1125  d1=0;
1126  for (casadi_int d=0; d<nadj; ++d) {
1127  if (skip[d]) continue;
1128  for (casadi_int i=0; i<it->arg.size(); ++i) {
1129  casadi_int el = it->arg[i];
1130  if (el>=0) {
1131  if (dwork[el][d].is_empty(true)) {
1132  dwork[el][d] = osens[d1][i];
1133  } else {
1134  dwork[el][d] += osens[d1][i];
1135  }
1136  }
1137  }
1138  d1++;
1139  }
1140  }
1141  }
1142 
1143  // Get adjoint sensitivities
1144  for (casadi_int d=0; d<nadj; ++d) {
1145  for (casadi_int i=0; i<in_.size(); ++i) {
1146  asens[d][i] = in_[i].join_primitives(asens_split[d][i]);
1147  }
1148  }
1149  } catch (std::exception& e) {
1150  CASADI_THROW_ERROR("ad_reverse", e.what());
1151  }
1152  }
1153 
1154  int MXFunction::eval_sx(const SXElem** arg, SXElem** res,
1155  casadi_int* iw, SXElem* w, void* mem,
1156  bool always_inline, bool never_inline) const {
1157  always_inline = always_inline || always_inline_;
1158  never_inline = never_inline || never_inline_;
1159 
1160  // non-inlining call is implemented in the base-class
1161  if (!should_inline(true, always_inline, never_inline)) {
1162  return FunctionInternal::eval_sx(arg, res, iw, w, mem, false, true);
1163  }
1164 
1165  // Work vector and temporaries to hold pointers to operation input and outputs
1166  std::vector<const SXElem*> argp(sz_arg());
1167  std::vector<SXElem*> resp(sz_res());
1168 
1169  // Evaluate all of the nodes of the algorithm:
1170  // should only evaluate nodes that have not yet been calculated!
1171  for (auto&& a : algorithm_) {
1172  if (a.op==OP_INPUT) {
1173  // Pass an input
1174  SXElem *w1 = w+workloc_[a.res.front()];
1175  casadi_int nnz=a.data.nnz();
1176  casadi_int i=a.data->ind();
1177  casadi_int nz_offset=a.data->offset();
1178  if (arg[i]==nullptr) {
1179  std::fill(w1, w1+nnz, 0);
1180  } else {
1181  std::copy(arg[i]+nz_offset, arg[i]+nz_offset+nnz, w1);
1182  }
1183  } else if (a.op==OP_OUTPUT) {
1184  // Get the outputs
1185  SXElem *w1 = w+workloc_[a.arg.front()];
1186  casadi_int nnz=a.data.dep().nnz();
1187  casadi_int i=a.data->ind();
1188  casadi_int nz_offset=a.data->offset();
1189  if (res[i]) std::copy(w1, w1+nnz, res[i]+nz_offset);
1190  } else if (a.op==OP_PARAMETER) {
1191  continue; // FIXME
1192  } else {
1193  // Point pointers to the data corresponding to the element
1194  for (casadi_int i=0; i<a.arg.size(); ++i)
1195  argp[i] = a.arg[i]>=0 ? w+workloc_[a.arg[i]] : nullptr;
1196  for (casadi_int i=0; i<a.res.size(); ++i)
1197  resp[i] = a.res[i]>=0 ? w+workloc_[a.res[i]] : nullptr;
1198 
1199  // Evaluate
1200  if (a.data->eval_sx(get_ptr(argp), get_ptr(resp), iw, w)) return 1;
1201  }
1202  }
1203  return 0;
1204  }
1205 
1207 
1208  // Make sure that there are no free variables
1209  if (!free_vars_.empty()) {
1210  casadi_error("Code generation of '" + name_ + "' is not possible since variables "
1211  + str(free_vars_) + " are free.");
1212  }
1213 
1214  // Generate code for the embedded functions
1215  for (auto&& a : algorithm_) {
1216  a.data->add_dependency(g);
1217  }
1218  }
1219 
1221  std::set<void*> added;
1222  for (auto&& a : algorithm_) {
1223  a.data->codegen_incref(g, added);
1224  }
1225  }
1226 
1228  std::set<void*> added;
1229  for (auto&& a : algorithm_) {
1230  a.data->codegen_decref(g, added);
1231  }
1232  }
1233 
1235  // Temporary variables and vectors
1236  g.init_local("arg1", "arg+" + str(n_in_));
1237  g.init_local("res1", "res+" + str(n_out_));
1238 
1239  g.reserve_work(workloc_.size()-1);
1240 
1241  // Operation number (for printing)
1242  casadi_int k=0;
1243 
1244  // Names of operation argument and results
1245  std::vector<casadi_int> arg, res;
1246 
1247  // State of work vector: reference or not (value types)
1248  std::vector<bool> work_is_ref(workloc_.size()-1, false);
1249 
1250  // State of operation arguments and results: reference or not
1251  std::vector<bool> arg_is_ref, res_is_ref;
1252 
1253  // Collect for each work vector element if reference or value needed
1254  std::vector<bool> needs_reference(workloc_.size()-1, false);
1255  std::vector<bool> needs_value(workloc_.size()-1, false);
1256 
1257  // Codegen the algorithm
1258  for (auto&& e : algorithm_) {
1259  // Generate comment
1260  if (g.verbose) {
1261  g << "/* #" << k << ": " << print(e) << " */\n";
1262  }
1263 
1264  // Get the names of the operation arguments
1265  arg.resize(e.arg.size());
1266  arg_is_ref.resize(e.arg.size());
1267  for (casadi_int i=0; i<e.arg.size(); ++i) {
1268  casadi_int j=e.arg.at(i);
1269  if (j>=0 && workloc_.at(j)!=workloc_.at(j+1)) {
1270  arg.at(i) = j;
1271  arg_is_ref.at(i) = work_is_ref.at(j);
1272  } else {
1273  arg.at(i) = -1;
1274  arg_is_ref.at(i) = false;
1275  }
1276  }
1277 
1278  // Get the names of the operation results
1279  res.resize(e.res.size());
1280  for (casadi_int i=0; i<e.res.size(); ++i) {
1281  casadi_int j=e.res.at(i);
1282  if (j>=0 && workloc_.at(j)!=workloc_.at(j+1)) {
1283  res.at(i) = j;
1284  } else {
1285  res.at(i) = -1;
1286  }
1287  }
1288 
1289  res_is_ref.resize(e.res.size());
1290  // By default, don't assume references
1291  std::fill(res_is_ref.begin(), res_is_ref.end(), false);
1292 
1293  if (print_instructions_ && e.op!=OP_INPUT && e.op!=OP_OUTPUT) {
1294  print_arg(g, k, e, arg, arg_is_ref);
1295  }
1296 
1297  // Generate operation
1298  e.data->generate(g, arg, res, arg_is_ref, res_is_ref);
1299 
1300  for (casadi_int i=0; i<e.res.size(); ++i) {
1301  casadi_int j=e.res.at(i);
1302  if (j>=0 && workloc_.at(j)!=workloc_.at(j+1)) {
1303  work_is_ref.at(j) = res_is_ref.at(i);
1304  if (res_is_ref.at(i)) {
1305  needs_reference[j] = true;
1306  } else {
1307  needs_value[j] = true;
1308  }
1309  }
1310  }
1311 
1312  if (print_instructions_ && e.op!=OP_INPUT && e.op!=OP_OUTPUT) {
1313  print_res(g, k, e, res, res_is_ref);
1314  }
1315 
1316  k++;
1317 
1318  }
1319 
1320  // Declare scalar work vector elements as local variables
1321  for (casadi_int i=0; i<workloc_.size()-1; ++i) {
1322  casadi_int n=workloc_[i+1]-workloc_[i];
1323  if (n==0) continue;
1324  /* Could use local variables for small work vector elements here, e.g.:
1325  ...
1326  } else if (n<10) {
1327  g << "w" << i << "[" << n << "]";
1328  } else {
1329  ...
1330  */
1331  if (!g.codegen_scalars && n==1) {
1332  g.local("w" + g.format_padded(i), "casadi_real");
1333  } else {
1334  if (needs_value[i]) {
1335  g.local("w" + g.format_padded(i), "casadi_real", "*");
1336  g.init_local("w" + g.format_padded(i), "w+" + str(workloc_[i]));
1337  }
1338  if (needs_reference[i]) {
1339  g.local("wr" + g.format_padded(i), "const casadi_real", "*");
1340  }
1341  }
1342  }
1343  }
1344 
1345  void MXFunction::generate_lifted(Function& vdef_fcn, Function& vinit_fcn) const {
1346  std::vector<MX> swork(workloc_.size()-1);
1347 
1348  std::vector<MX> arg1, res1;
1349 
1350  // Get input primitives
1351  std::vector<std::vector<MX> > in_split(in_.size());
1352  for (casadi_int i=0; i<in_.size(); ++i) in_split[i] = in_[i].primitives();
1353 
1354  // Definition of intermediate variables
1355  std::vector<MX> y;
1356  std::vector<MX> g;
1357  std::vector<std::vector<MX> > f_G(out_.size());
1358  for (casadi_int i=0; i<out_.size(); ++i) f_G[i].resize(out_[i].n_primitives());
1359 
1360  // Initial guess for intermediate variables
1361  std::vector<MX> x_init;
1362 
1363  // Temporary std::stringstream
1364  std::stringstream ss;
1365 
1366  for (casadi_int algNo=0; algNo<2; ++algNo) {
1367  for (auto&& e : algorithm_) {
1368  switch (e.op) {
1369  case OP_LIFT:
1370  {
1371  MX& arg = swork[e.arg.at(0)];
1372  MX& arg_init = swork[e.arg.at(1)];
1373  MX& res = swork[e.res.front()];
1374  switch (algNo) {
1375  case 0:
1376  ss.str(std::string());
1377  ss << "y" << y.size();
1378  y.push_back(MX::sym(ss.str(), arg.sparsity()));
1379  g.push_back(arg);
1380  res = y.back();
1381  break;
1382  case 1:
1383  x_init.push_back(arg_init);
1384  res = arg_init;
1385  break;
1386  }
1387  break;
1388  }
1389  case OP_INPUT:
1390  swork[e.res.front()] = in_split.at(e.data->ind()).at(e.data->segment());
1391  break;
1392  case OP_PARAMETER:
1393  swork[e.res.front()] = e.data;
1394  break;
1395  case OP_OUTPUT:
1396  if (algNo==0) {
1397  f_G.at(e.data->ind()).at(e.data->segment()) = swork[e.arg.front()];
1398  }
1399  break;
1400  default:
1401  {
1402  // Arguments of the operation
1403  arg1.resize(e.arg.size());
1404  for (casadi_int i=0; i<arg1.size(); ++i) {
1405  casadi_int el = e.arg[i]; // index of the argument
1406  arg1[i] = el<0 ? MX(e.data->dep(i).size()) : swork[el];
1407  }
1408 
1409  // Perform the operation
1410  res1.resize(e.res.size());
1411  e.data->eval_mx(arg1, res1);
1412 
1413  // Get the result
1414  for (casadi_int i=0; i<res1.size(); ++i) {
1415  casadi_int el = e.res[i]; // index of the output
1416  if (el>=0) swork[el] = res1[i];
1417  }
1418  }
1419  }
1420  }
1421  }
1422 
1423  // Definition of intermediate variables
1424  std::vector<MX> f_in = in_;
1425  f_in.insert(f_in.end(), y.begin(), y.end());
1426  std::vector<MX> f_out;
1427  for (casadi_int i=0; i<out_.size(); ++i) f_out.push_back(out_[i].join_primitives(f_G[i]));
1428  f_out.insert(f_out.end(), g.begin(), g.end());
1429  vdef_fcn = Function("lifting_variable_definition", f_in, f_out);
1430 
1431  // Initial guess of intermediate variables
1432  f_in = in_;
1433  f_out = x_init;
1434  vinit_fcn = Function("lifting_variable_guess", f_in, f_out);
1435  }
1436 
1437  const MX MXFunction::mx_in(casadi_int ind) const {
1438  return in_.at(ind);
1439  }
1440 
1441  const std::vector<MX> MXFunction::mx_in() const {
1442  return in_;
1443  }
1444 
1445  bool MXFunction::is_a(const std::string& type, bool recursive) const {
1446  return type=="MXFunction"
1447  || (recursive && XFunction<MXFunction,
1448  MX, MXNode>::is_a(type, recursive));
1449  }
1450 
1451  void MXFunction::substitute_inplace(std::vector<MX>& vdef, std::vector<MX>& ex) const {
1452  std::vector<MX> work(workloc_.size()-1);
1453  std::vector<MX> oarg, ores;
1454 
1455  // Output segments
1456  std::vector<std::vector<MX>> out_split(out_.size());
1457  for (casadi_int i = 0; i < out_split.size(); ++i) out_split[i].resize(out_[i].n_primitives());
1458 
1459  // Evaluate algorithm
1460  for (auto it=algorithm_.begin(); it!=algorithm_.end(); ++it) {
1461  switch (it->op) {
1462  case OP_INPUT:
1463  casadi_assert(it->data->segment()==0, "Not implemented");
1464  work.at(it->res.front())
1465  = out_.at(it->data->ind()).join_primitives(out_split.at(it->data->ind()));
1466  break;
1467  case OP_PARAMETER:
1468  case OP_CONST:
1469  work.at(it->res.front()) = it->data;
1470  break;
1471  case OP_OUTPUT:
1472  out_split.at(it->data->ind()).at(it->data->segment()) = work.at(it->arg.front());
1473  break;
1474  default:
1475  {
1476  // Arguments of the operation
1477  oarg.resize(it->arg.size());
1478  for (casadi_int i=0; i<oarg.size(); ++i) {
1479  casadi_int el = it->arg[i];
1480  oarg[i] = el<0 ? MX(it->data->dep(i).size()) : work.at(el);
1481  }
1482 
1483  // Perform the operation
1484  ores.resize(it->res.size());
1485  it->data->eval_mx(oarg, ores);
1486 
1487  // Get the result
1488  for (casadi_int i=0; i<ores.size(); ++i) {
1489  casadi_int el = it->res[i];
1490  if (el>=0) work.at(el) = ores[i];
1491  }
1492  }
1493  }
1494  }
1495  // Join primitives
1496  for (size_t k = 0; k < out_split.size(); ++k) {
1497  MX a = out_.at(k).join_primitives(out_split.at(k));
1498  if (k < vdef.size()) {
1499  vdef.at(k) = a;
1500  } else {
1501  ex.at(k - vdef.size()) = a;
1502  }
1503  }
1504  }
1505 
1506  bool MXFunction::should_inline(bool with_sx, bool always_inline, bool never_inline) const {
1507  // If inlining has been specified
1508  casadi_assert(!(always_inline && never_inline),
1509  "Inconsistent options for " + definition());
1510  casadi_assert(!(never_inline && has_free()),
1511  "Must inline " + definition());
1512  if (always_inline) return true;
1513  if (never_inline) return false;
1514  // Functions with free variables must be inlined
1515  if (has_free()) return true;
1516  // Default inlining only when called with sx
1517  return with_sx;
1518  }
1519 
1520  void MXFunction::export_code_body(const std::string& lang,
1521  std::ostream &ss, const Dict& options) const {
1522 
1523  // Default values for options
1524  casadi_int indent_level = 0;
1525 
1526  // Read options
1527  for (auto&& op : options) {
1528  if (op.first=="indent_level") {
1529  indent_level = op.second;
1530  } else {
1531  casadi_error("Unknown option '" + op.first + "'.");
1532  }
1533  }
1534 
1535  // Construct indent string
1536  std::string indent;
1537  for (casadi_int i=0;i<indent_level;++i) {
1538  indent += " ";
1539  }
1540 
1541  Function f = shared_from_this<Function>();
1542 
1543  // Loop over algorithm
1544  for (casadi_int k=0;k<f.n_instructions();++k) {
1545  // Get operation
1546  casadi_int op = static_cast<casadi_int>(f.instruction_id(k));
1547  // Get MX node
1548  MX x = f.instruction_MX(k);
1549  // Get input positions into workvector
1550  std::vector<casadi_int> o = f.instruction_output(k);
1551  // Get output positions into workvector
1552  std::vector<casadi_int> i = f.instruction_input(k);
1553 
1554  switch (op) {
1555  case OP_INPUT:
1556  ss << indent << "w" << o[0] << " = varargin{" << i[0]+1 << "};" << std::endl;
1557  break;
1558  case OP_OUTPUT:
1559  {
1560  Dict info = x.info();
1561  casadi_int segment = info["segment"];
1562  x.dep(0).sparsity().export_code("matlab", ss,
1563  {{"name", "sp_in"}, {"indent_level", indent_level}, {"as_matrix", true}});
1564  ss << indent << "argout_" << o[0] << "{" << (1+segment) << "} = ";
1565  ss << "w" << i[0] << "(sp_in==1);" << std::endl;
1566  }
1567  break;
1568  case OP_CONST:
1569  {
1570  DM v = static_cast<DM>(x);
1571  Dict opts;
1572  opts["name"] = "m";
1573  opts["indent_level"] = indent_level;
1574  v.export_code("matlab", ss, opts);
1575  ss << indent << "w" << o[0] << " = m;" << std::endl;
1576  }
1577  break;
1578  case OP_SQ:
1579  ss << indent << "w" << o[0] << " = " << "w" << i[0] << ".^2;" << std::endl;
1580  break;
1581  case OP_MTIMES:
1582  ss << indent << "w" << o[0] << " = ";
1583  ss << "w" << i[1] << "*w" << i[2] << "+w" << i[0] << ";" << std::endl;
1584  break;
1585  case OP_MUL:
1586  {
1587  std::string prefix = (x.dep(0).is_scalar() || x.dep(1).is_scalar()) ? "" : ".";
1588  ss << indent << "w" << o[0] << " = " << "w" << i[0] << prefix << "*w" << i[1] << ";";
1589  ss << std::endl;
1590  }
1591  break;
1592  case OP_TWICE:
1593  ss << indent << "w" << o[0] << " = 2*w" << i[0] << ";" << std::endl;
1594  break;
1595  case OP_INV:
1596  ss << indent << "w" << o[0] << " = 1./w" << i[0] << ";" << std::endl;
1597  break;
1598  case OP_DOT:
1599  ss << indent << "w" << o[0] << " = dot(w" << i[0] << ",w" << i[1]<< ");" << std::endl;
1600  break;
1601  case OP_BILIN:
1602  ss << indent << "w" << o[0] << " = w" << i[1] << ".'*w" << i[0]<< "*w" << i[2] << ";";
1603  ss << std::endl;
1604  break;
1605  case OP_RANK1:
1606  ss << indent << "w" << o[0] << " = w" << i[0] << "+";
1607  ss << "w" << i[1] << "*w" << i[2] << "*w" << i[3] << ".';";
1608  ss << std::endl;
1609  break;
1610  case OP_FABS:
1611  ss << indent << "w" << o[0] << " = abs(w" << i[0] << ");" << std::endl;
1612  break;
1613  case OP_DETERMINANT:
1614  ss << indent << "w" << o[0] << " = det(w" << i[0] << ");" << std::endl;
1615  break;
1616  case OP_INVERSE:
1617  ss << indent << "w" << o[0] << " = inv(w" << i[0] << ");";
1618  ss << "w" << o[0] << "(w" << o[0] << "==0) = 1e-200;" << std::endl;
1619  break;
1620  case OP_SOLVE:
1621  {
1622  bool tr = x.info()["tr"];
1623  if (tr) {
1624  ss << indent << "w" << o[0] << " = ((w" << i[1] << ".')\\w" << i[0] << ").';";
1625  ss << std::endl;
1626  } else {
1627  ss << indent << "w" << o[0] << " = w" << i[1] << "\\w" << i[0] << ";" << std::endl;
1628  }
1629  ss << "w" << o[0] << "(w" << o[0] << "==0) = 1e-200;" << std::endl;
1630  }
1631  break;
1632  case OP_DIV:
1633  {
1634  std::string prefix = (x.dep(0).is_scalar() || x.dep(1).is_scalar()) ? "" : ".";
1635  ss << indent << "w" << o[0] << " = " << "w" << i[0] << prefix << "/w" << i[1] << ";";
1636  ss << std::endl;
1637  }
1638  break;
1639  case OP_POW:
1640  case OP_CONSTPOW:
1641  ss << indent << "w" << o[0] << " = " << "w" << i[0] << ".^w" << i[1] << ";" << std::endl;
1642  break;
1643  case OP_TRANSPOSE:
1644  ss << indent << "w" << o[0] << " = " << "w" << i[0] << ".';" << std::endl;
1645  break;
1646  case OP_HORZCAT:
1647  case OP_VERTCAT:
1648  {
1649  ss << indent << "w" << o[0] << " = [";
1650  for (casadi_int e : i) {
1651  ss << "w" << e << (op==OP_HORZCAT ? " " : ";");
1652  }
1653  ss << "];" << std::endl;
1654  }
1655  break;
1656  case OP_DIAGCAT:
1657  {
1658  for (casadi_int k=0;k<i.size();++k) {
1659  x.dep(k).sparsity().export_code("matlab", ss,
1660  {{"name", "sp_in" + str(k)}, {"indent_level", indent_level}, {"as_matrix", true}});
1661  }
1662  ss << indent << "w" << o[0] << " = [";
1663  for (casadi_int k=0;k<i.size();++k) {
1664  ss << "w" << i[k] << "(sp_in" << k << "==1);";
1665  }
1666  ss << "];" << std::endl;
1667  Dict opts;
1668  opts["name"] = "sp";
1669  opts["indent_level"] = indent_level;
1670  opts["as_matrix"] = false;
1671  x.sparsity().export_code("matlab", ss, opts);
1672  ss << indent << "w" << o[0] << " = ";
1673  ss << "sparse(sp_i, sp_j, w" << o[0] << ", sp_m, sp_n);" << std::endl;
1674  }
1675  break;
1676  case OP_HORZSPLIT:
1677  case OP_VERTSPLIT:
1678  {
1679  Dict info = x.info();
1680  std::vector<casadi_int> offset = info["offset"];
1681  casadi::Function output = info["output"];
1682  std::vector<Sparsity> sp;
1683  for (casadi_int i=0;i<output.n_out();i++)
1684  sp.push_back(output.sparsity_out(i));
1685  for (casadi_int k=0;k<o.size();++k) {
1686  if (o[k]==-1) continue;
1687  x.dep(0).sparsity().export_code("matlab", ss,
1688  {{"name", "sp_in"}, {"indent_level", indent_level}, {"as_matrix", true}});
1689  ss << indent << "tmp = w" << i[0]<< "(sp_in==1);" << std::endl;
1690  Dict opts;
1691  opts["name"] = "sp";
1692  opts["indent_level"] = indent_level;
1693  opts["as_matrix"] = false;
1694  sp[k].export_code("matlab", ss, opts);
1695  ss << indent << "w" << o[k] << " = sparse(sp_i, sp_j, ";
1696  ss << "tmp(" << offset[k]+1 << ":" << offset[k+1] << "), sp_m, sp_n);" << std::endl;
1697  }
1698  }
1699  break;
1700  case OP_GETNONZEROS:
1701  case OP_SETNONZEROS:
1702  {
1703  Dict info = x.info();
1704 
1705  std::string nonzeros;
1706  if (info.find("nz")!=info.end()) {
1707  nonzeros = "1+" + str(info["nz"]);
1708  } else if (info.find("slice")!=info.end()) {
1709  Dict s = info["slice"];
1710  casadi_int start = s["start"];
1711  casadi_int step = s["step"];
1712  casadi_int stop = s["stop"];
1713  nonzeros = str(start+1) + ":" + str(step) + ":" + str(stop);
1714  nonzeros = "nonzeros(" + nonzeros + ")";
1715  } else {
1716  Dict inner = info["inner"];
1717  Dict outer = info["outer"];
1718  casadi_int inner_start = inner["start"];
1719  casadi_int inner_step = inner["step"];
1720  casadi_int inner_stop = inner["stop"];
1721  casadi_int outer_start = outer["start"];
1722  casadi_int outer_step = outer["step"];
1723  casadi_int outer_stop = outer["stop"];
1724  std::string inner_slice = "(" + str(inner_start) + ":" +
1725  str(inner_step) + ":" + str(inner_stop-1)+")";
1726  std::string outer_slice = "(" + str(outer_start+1) + ":" +
1727  str(outer_step) + ":" + str(outer_stop)+")";
1728  casadi_int N = range(outer_start, outer_stop, outer_step).size();
1729  casadi_int M = range(inner_start, inner_stop, inner_step).size();
1730  nonzeros = "repmat("+ inner_slice +"', 1, " + str(N) + ")+" +
1731  "repmat("+ outer_slice +", " + str(M) + ", 1)";
1732  nonzeros = "nonzeros(" + nonzeros + ")";
1733  }
1734 
1735  Dict opts;
1736  opts["name"] = "sp";
1737  opts["indent_level"] = indent_level;
1738  opts["as_matrix"] = false;
1739  x.sparsity().export_code("matlab", ss, opts);
1740 
1741  if (op==OP_GETNONZEROS) {
1742  x.dep(0).sparsity().export_code("matlab", ss,
1743  {{"name", "sp_in"}, {"indent_level", indent_level}, {"as_matrix", true}});
1744  //ss << indent << "w" << i[0] << "" << std::endl;
1745  //ss << indent << "size(w" << i[0] << ")" << std::endl;
1746  ss << indent << "in_flat = w" << i[0] << "(sp_in==1);" << std::endl;
1747  //ss << indent << "in_flat" << std::endl;
1748  //ss << indent << "size(in_flat)" << std::endl;
1749  ss << indent << "w" << o[0] << " = in_flat(" << nonzeros << ");" << std::endl;
1750  } else {
1751  x.dep(0).sparsity().export_code("matlab", ss,
1752  {{"name", "sp_in0"}, {"indent_level", indent_level}, {"as_matrix", true}});
1753  x.dep(1).sparsity().export_code("matlab", ss,
1754  {{"name", "sp_in1"}, {"indent_level", indent_level}, {"as_matrix", true}});
1755  ss << indent << "in_flat = w" << i[1] << "(sp_in1==1);" << std::endl;
1756  ss << indent << "w" << o[0] << " = w" << i[0] << "(sp_in0==1);" << std::endl;
1757  ss << indent << "w" << o[0] << "(" << nonzeros << ") = ";
1758  if (info["add"]) ss << "w" << o[0] << "(" << nonzeros << ") + ";
1759  ss << "in_flat;";
1760  }
1761  ss << indent << "w" << o[0] << " = ";
1762  ss << "sparse(sp_i, sp_j, w" << o[0] << ", sp_m, sp_n);" << std::endl;
1763  }
1764  break;
1765  case OP_PROJECT:
1766  {
1767  Dict opts;
1768  opts["name"] = "sp";
1769  opts["indent_level"] = indent_level;
1770  x.sparsity().export_code("matlab", ss, opts);
1771  ss << indent << "w" << o[0] << " = ";
1772  ss << "sparse(sp_i, sp_j, w" << i[0] << "(sp==1), sp_m, sp_n);" << std::endl;
1773  }
1774  break;
1775  case OP_NORM1:
1776  ss << indent << "w" << o[0] << " = norm(w" << i[0] << ", 1);" << std::endl;
1777  break;
1778  case OP_NORM2:
1779  ss << indent << "w" << o[0] << " = norm(w" << i[0] << ", 2);" << std::endl;
1780  break;
1781  case OP_NORMF:
1782  ss << indent << "w" << o[0] << " = norm(w" << i[0] << ", 'fro');" << std::endl;
1783  break;
1784  case OP_NORMINF:
1785  ss << indent << "w" << o[0] << " = norm(w" << i[0] << ", inf);" << std::endl;
1786  break;
1787  case OP_MMIN:
1788  ss << indent << "w" << o[0] << " = min(w" << i[0] << ");" << std::endl;
1789  break;
1790  case OP_MMAX:
1791  ss << indent << "w" << o[0] << " = max(w" << i[0] << ");" << std::endl;
1792  break;
1793  case OP_NOT:
1794  ss << indent << "w" << o[0] << " = ~" << "w" << i[0] << ";" << std::endl;
1795  break;
1796  case OP_OR:
1797  ss << indent << "w" << o[0] << " = w" << i[0] << " | w" << i[1] << ";" << std::endl;
1798  break;
1799  case OP_AND:
1800  ss << indent << "w" << o[0] << " = w" << i[0] << " & w" << i[1] << ";" << std::endl;
1801  break;
1802  case OP_NE:
1803  ss << indent << "w" << o[0] << " = w" << i[0] << " ~= w" << i[1] << ";" << std::endl;
1804  break;
1805  case OP_IF_ELSE_ZERO:
1806  ss << indent << "w" << o[0] << " = ";
1807  ss << "if_else_zero_gen(w" << i[0] << ", w" << i[1] << ");" << std::endl;
1808  break;
1809  case OP_RESHAPE:
1810  {
1811  x.dep(0).sparsity().export_code("matlab", ss,
1812  {{"name", "sp_in"}, {"indent_level", indent_level}, {"as_matrix", true}});
1813  x.sparsity().export_code("matlab", ss,
1814  {{"name", "sp_out"}, {"indent_level", indent_level}, {"as_matrix", false}});
1815  ss << indent << "w" << o[0] << " = sparse(sp_out_i, sp_out_j, ";
1816  ss << "w" << i[0] << "(sp_in==1), sp_out_m, sp_out_n);" << std::endl;
1817  }
1818  break;
1819  default:
1820  if (x.is_binary()) {
1821  ss << indent << "w" << o[0] << " = " << casadi::casadi_math<double>::print(op,
1822  "w"+std::to_string(i[0]), "w"+std::to_string(i[1])) << ";" << std::endl;
1823  } else if (x.is_unary()) {
1824  ss << indent << "w" << o[0] << " = " << casadi::casadi_math<double>::print(op,
1825  "w"+std::to_string(i[0])) << ";" << std::endl;
1826  } else {
1827  ss << "unknown" + x.class_name() << std::endl;
1828  }
1829  }
1830  }
1831  }
1832 
1833  Dict MXFunction::get_stats(void* mem) const {
1834  Dict stats = XFunction::get_stats(mem);
1835 
1836  Function dep;
1837  for (auto&& e : algorithm_) {
1838  if (e.op==OP_CALL) {
1839  Function d = e.data.which_function();
1840  if (d.is_a("Conic", true) || d.is_a("Nlpsol")) {
1841  if (!dep.is_null()) return stats;
1842  dep = d;
1843  }
1844  }
1845  }
1846  if (dep.is_null()) return stats;
1847  return dep.stats(1);
1848  }
1849 
1852 
1853  s.version("MXFunction", 2);
1854  s.pack("MXFunction::n_instr", algorithm_.size());
1855 
1856  // Loop over algorithm
1857  for (const auto& e : algorithm_) {
1858  s.pack("MXFunction::alg::data", e.data);
1859  s.pack("MXFunction::alg::arg", e.arg);
1860  s.pack("MXFunction::alg::res", e.res);
1861  }
1862 
1863  s.pack("MXFunction::workloc", workloc_);
1864  s.pack("MXFunction::free_vars", free_vars_);
1865  s.pack("MXFunction::default_in", default_in_);
1866  s.pack("MXFunction::live_variables", live_variables_);
1867  s.pack("MXFunction::print_instructions", print_instructions_);
1868 
1870  }
1871 
1872 
1874  int version = s.version("MXFunction", 1, 2);
1875  size_t n_instructions;
1876  s.unpack("MXFunction::n_instr", n_instructions);
1877  algorithm_.resize(n_instructions);
1878  for (casadi_int k=0;k<n_instructions;++k) {
1879  AlgEl& e = algorithm_[k];
1880  s.unpack("MXFunction::alg::data", e.data);
1881  e.op = e.data.op();
1882  s.unpack("MXFunction::alg::arg", e.arg);
1883  s.unpack("MXFunction::alg::res", e.res);
1884  }
1885 
1886  s.unpack("MXFunction::workloc", workloc_);
1887  s.unpack("MXFunction::free_vars", free_vars_);
1888  s.unpack("MXFunction::default_in", default_in_);
1889  s.unpack("MXFunction::live_variables", live_variables_);
1890  print_instructions_ = false;
1891  if (version >= 2) s.unpack("MXFunction::print_instructions", print_instructions_);
1892 
1894  }
1895 
1897  return new MXFunction(s);
1898  }
1899 
1900  void MXFunction::find(std::map<FunctionInternal*, Function>& all_fun,
1901  casadi_int max_depth) const {
1902  for (auto&& e : algorithm_) {
1903  if (e.op == OP_CALL) add_embedded(all_fun, e.data.which_function(), max_depth);
1904  }
1905  }
1906 
1907  void MXFunction::change_option(const std::string& option_name,
1908  const GenericType& option_value) {
1909  if (option_name == "print_instructions") {
1910  print_instructions_ = option_value;
1911  } else {
1912  // Option not found - continue to base classes
1913  XFunction<MXFunction, MX, MXNode>::change_option(option_name, option_value);
1914  }
1915  }
1916 
1917  std::vector<MX> MXFunction::order(const std::vector<MX>& expr) {
1918 #ifdef CASADI_WITH_THREADSAFE_SYMBOLICS
1919  std::lock_guard<std::mutex> lock(MX::get_mutex_temp());
1920 #endif // CASADI_WITH_THREADSAFE_SYMBOLICS
1921  // Stack used to sort the computational graph
1922  std::stack<MXNode*> s;
1923 
1924  // All nodes
1925  std::vector<MXNode*> nodes;
1926 
1927  // Add the list of nodes
1928  for (casadi_int ind=0; ind<expr.size(); ++ind) {
1929  // Loop over primitives of each output
1930  std::vector<MX> prim = expr[ind].primitives();
1931  for (casadi_int p=0; p<prim.size(); ++p) {
1932  // Get the nodes using a depth first search
1933  s.push(prim[p].get());
1935  }
1936  }
1937 
1938  // Clear temporary markers
1939  for (casadi_int i=0; i<nodes.size(); ++i) {
1940  nodes[i]->temp = 0;
1941  }
1942 
1943  std::vector<MX> ret(nodes.size());
1944  for (casadi_int i=0; i<nodes.size(); ++i) {
1945  ret[i].own(nodes[i]);
1946  }
1947 
1948  return ret;
1949  }
1950 
1951 } // namespace casadi
Helper class for C code generation.
bool codegen_scalars
Codegen scalar.
std::string work(casadi_int n, casadi_int sz, bool is_ref) const
void reserve_work(casadi_int n)
Reserve a maximum size of work elements, used for padding of index.
std::string printf(const std::string &str, const std::vector< std::string > &arg=std::vector< std::string >())
Printf.
void local(const std::string &name, const std::string &type, const std::string &ref="")
Declare a local variable.
void init_local(const std::string &name, const std::string &def)
Specify the default value for a local variable.
std::string print_canonical(const Sparsity &sp, const std::string &arg)
Print canonical representaion of a matrix.
std::string format_padded(casadi_int i) const
Helper class for Serialization.
void unpack(Sparsity &e)
Reconstruct an object from the input stream.
void version(const std::string &name, int v)
bool has_refcount_
Reference counting in codegen?
void alloc_iw(size_t sz_iw, bool persistent=false)
Ensure required length of iw field.
Dict get_stats(void *mem) const override
Get all statistics.
virtual void call_forward(const std::vector< MX > &arg, const std::vector< MX > &res, const std::vector< std::vector< MX > > &fseed, std::vector< std::vector< MX > > &fsens, bool always_inline, bool never_inline) const
Forward mode AD, virtual functions overloaded in derived classes.
std::vector< std::vector< M > > replace_fseed(const std::vector< std::vector< M >> &fseed, casadi_int npar) const
Replace 0-by-0 forward seeds.
void alloc_res(size_t sz_res, bool persistent=false)
Ensure required length of res field.
std::pair< casadi_int, casadi_int > size_in(casadi_int ind) const
Input/output dimensions.
std::string definition() const
Get function signature: name:(inputs)->(outputs)
virtual void call_reverse(const std::vector< MX > &arg, const std::vector< MX > &res, const std::vector< std::vector< MX > > &aseed, std::vector< std::vector< MX > > &asens, bool always_inline, bool never_inline) const
Reverse mode, virtual functions overloaded in derived classes.
void alloc_arg(size_t sz_arg, bool persistent=false)
Ensure required length of arg field.
static void print_canonical(std::ostream &stream, const Sparsity &sp, const double *nz)
Print canonical representation of a numeric matrix.
virtual double sp_weight() const
Weighting factor for chosing forward/reverse mode,.
size_t n_in_
Number of inputs and outputs.
size_t sz_res() const
Get required length of res field.
virtual void eval_mx(const MXVector &arg, MXVector &res, bool always_inline, bool never_inline) const
Evaluate with symbolic matrices.
virtual int eval_sx(const SXElem **arg, SXElem **res, casadi_int *iw, SXElem *w, void *mem, bool always_inline, bool never_inline) const
Evaluate with symbolic scalars.
bool matching_arg(const std::vector< M > &arg, casadi_int &npar) const
Check if input arguments that needs to be replaced.
std::pair< casadi_int, casadi_int > size_out(casadi_int ind) const
Input/output dimensions.
virtual int sp_forward(const bvec_t **arg, bvec_t **res, casadi_int *iw, bvec_t *w, void *mem) const
Propagate sparsity forward.
static const Options options_
Options.
bool matching_res(const std::vector< M > &arg, casadi_int &npar) const
Check if output arguments that needs to be replaced.
void disp(std::ostream &stream, bool more) const override
Display object.
size_t sz_w() const
Get required length of w field.
virtual int sp_reverse(bvec_t **arg, bvec_t **res, casadi_int *iw, bvec_t *w, void *mem) const
Propagate sparsity backwards.
void alloc_w(size_t sz_w, bool persistent=false)
Ensure required length of w field.
size_t sz_arg() const
Get required length of arg field.
void setup(void *mem, const double **arg, double **res, casadi_int *iw, double *w) const
Set the (persistent and temporary) work vectors.
virtual std::vector< MX > symbolic_output(const std::vector< MX > &arg) const
Get a vector of symbolic variables corresponding to the outputs.
void change_option(const std::string &option_name, const GenericType &option_value) override
Change option after object creation for debugging.
static bool purgable(const std::vector< MatType > &seed)
Can a derivative direction be skipped.
Dict generate_options(const std::string &target) const override
Reconstruct options dict.
void add_embedded(std::map< FunctionInternal *, Function > &all_fun, const Function &dep, casadi_int max_depth) const
std::vector< std::vector< M > > replace_aseed(const std::vector< std::vector< M >> &aseed, casadi_int npar) const
Replace 0-by-0 reverse seeds.
Function object.
Definition: function.hpp:60
casadi_int n_instructions() const
Number of instruction in the algorithm (SXFunction/MXFunction)
Definition: function.cpp:1717
const Sparsity & sparsity_out(casadi_int ind) const
Get sparsity of a given output.
Definition: function.cpp:1031
std::vector< casadi_int > instruction_input(casadi_int k) const
Locations in the work vector for the inputs of the instruction.
Definition: function.cpp:1749
std::vector< casadi_int > instruction_output(casadi_int k) const
Location in the work vector for the output of the instruction.
Definition: function.cpp:1765
MX instruction_MX(casadi_int k) const
Get the MX node corresponding to an instruction (MXFunction)
Definition: function.cpp:1725
casadi_int n_out() const
Get the number of function outputs.
Definition: function.cpp:823
bool is_a(const std::string &type, bool recursive=true) const
Check if the function is of a particular type.
Definition: function.cpp:1672
Dict stats(int mem=0) const
Get all statistics obtained at the end of the last evaluate call.
Definition: function.cpp:928
casadi_int instruction_id(casadi_int k) const
Identifier index of the instruction (SXFunction/MXFunction)
Definition: function.cpp:1741
std::pair< casadi_int, casadi_int > size() const
Get the shape.
casadi_int nnz() const
Get the number of (structural) non-zero elements.
static MX sym(const std::string &name, casadi_int nrow=1, casadi_int ncol=1)
Create an nrow-by-ncol symbolic primitive.
bool is_scalar(bool scalar_and_dense=false) const
Check if the matrix expression is scalar.
bool is_null() const
Is a null pointer?
void own(Internal *node)
Generic data type, can hold different types such as bool, casadi_int, std::string etc.
An input or output instruction.
casadi_int ind() const override
Input instruction.
static void check()
Raises an error if an interrupt was captured.
Internal node class for MXFunction.
Definition: mx_function.hpp:67
void find(std::map< FunctionInternal *, Function > &all_fun, casadi_int max_depth) const override
void codegen_body(CodeGenerator &g) const override
Generate code for the body of the C function.
static const Options options_
Options.
std::vector< casadi_int > workloc_
Offsets for elements in the w_ vector.
Definition: mx_function.hpp:82
bool live_variables_
Live variables?
Definition: mx_function.hpp:94
MX instruction_MX(casadi_int k) const override
get MX expression associated with instruction
Definition: mx_function.cpp:86
std::vector< casadi_int > instruction_output(casadi_int k) const override
Get the (integer) output argument of an atomic operation.
std::vector< double > default_in_
Default input values.
Definition: mx_function.hpp:91
void change_option(const std::string &option_name, const GenericType &option_value) override
Change option after object creation for debugging.
int sp_reverse(bvec_t **arg, bvec_t **res, casadi_int *iw, bvec_t *w, void *mem) const override
Propagate sparsity backwards.
const std::vector< MX > mx_in() const override
Get function input(s) and output(s)
int sp_forward(const bvec_t **arg, bvec_t **res, casadi_int *iw, bvec_t *w, void *mem) const override
Propagate sparsity forward.
void serialize_body(SerializingStream &s) const override
Serialize an object without type information.
void init(const Dict &opts) override
Initialize.
void print_arg(std::ostream &stream, casadi_int k, const AlgEl &el, const double **arg) const
void ad_reverse(const std::vector< std::vector< MX > > &adjSeed, std::vector< std::vector< MX > > &adjSens) const
Calculate reverse mode directional derivatives.
MXFunction(const std::string &name, const std::vector< MX > &input, const std::vector< MX > &output, const std::vector< std::string > &name_in, const std::vector< std::string > &name_out)
Constructor.
Definition: mx_function.cpp:43
void codegen_decref(CodeGenerator &g) const override
Codegen decref for dependencies.
std::vector< std::string > get_free() const override
Print free variables.
~MXFunction() override
Destructor.
Definition: mx_function.cpp:51
std::string print(const AlgEl &el) const
bool has_free() const override
Does the function have free variables.
int eval(const double **arg, double **res, casadi_int *iw, double *w, void *mem) const override
Evaluate numerically, work vectors given.
void disp_more(std::ostream &stream) const override
Print description.
void codegen_declarations(CodeGenerator &g) const override
Generate code for the declarations of the C function.
bool print_instructions_
Print instructions during evaluation.
Definition: mx_function.hpp:97
void substitute_inplace(std::vector< MX > &vdef, std::vector< MX > &ex) const
Substitute inplace, internal implementation.
std::vector< casadi_int > instruction_input(casadi_int k) const override
Get the (integer) input arguments of an atomic operation.
Definition: mx_function.cpp:90
int eval_sx(const SXElem **arg, SXElem **res, casadi_int *iw, SXElem *w, void *mem, bool always_inline, bool never_inline) const override
Evaluate symbolically, SX type.
casadi_int n_instructions() const override
Get the number of atomic operations.
void codegen_incref(CodeGenerator &g) const override
Codegen incref for dependencies.
bool should_inline(bool with_sx, bool always_inline, bool never_inline) const override
std::vector< AlgEl > algorithm_
All the runtime elements in the order of evaluation.
Definition: mx_function.hpp:77
void eval_mx(const MXVector &arg, MXVector &res, bool always_inline, bool never_inline) const override
Evaluate symbolically, MX type.
static std::vector< MX > order(const std::vector< MX > &expr)
bool is_a(const std::string &type, bool recursive) const override
Check if the function is of a particular type.
void print_res(std::ostream &stream, casadi_int k, const AlgEl &el, double **res) const
void ad_forward(const std::vector< std::vector< MX > > &fwdSeed, std::vector< std::vector< MX > > &fwdSens) const
Calculate forward mode directional derivatives.
std::vector< MX > free_vars_
Free variables.
Definition: mx_function.hpp:88
Dict generate_options(const std::string &target="clone") const override
Reconstruct options dict.
Definition: mx_function.cpp:78
void generate_lifted(Function &vdef_fcn, Function &vinit_fcn) const override
Extract the residual function G and the modified function Z out of an expression.
std::vector< MX > symbolic_output(const std::vector< MX > &arg) const override
Get a vector of symbolic variables corresponding to the outputs.
static ProtoFunction * deserialize(DeserializingStream &s)
Deserialize with type disambiguation.
Dict get_stats(void *mem) const override
Get all statistics.
void export_code_body(const std::string &lang, std::ostream &stream, const Dict &options) const override
Export function in a specific language.
Node class for MX objects.
Definition: mx_node.hpp:51
virtual casadi_int ind() const
Definition: mx_node.cpp:210
const Sparsity & sparsity() const
Get the sparsity.
Definition: mx_node.hpp:372
const MX & dep(casadi_int ind=0) const
dependencies - functions that have to be evaluated before this one
Definition: mx_node.hpp:354
virtual casadi_int segment() const
Definition: mx_node.cpp:214
virtual std::string disp(const std::vector< std::string > &arg) const =0
Print expression.
MX - Matrix expression.
Definition: mx.hpp:92
static MX create(MXNode *node)
Create from node.
Definition: mx.cpp:67
const Sparsity & sparsity() const
Get the sparsity pattern.
Definition: mx.cpp:592
Dict info() const
Definition: mx.cpp:826
MX dep(casadi_int ch=0) const
Get the nth dependency as MX.
Definition: mx.cpp:754
bool is_binary() const
Is binary operation.
Definition: mx.cpp:814
bool is_unary() const
Is unary operation.
Definition: mx.cpp:818
casadi_int op() const
Get operation type.
Definition: mx.cpp:822
static void print_default(std::ostream &stream, const Sparsity &sp, const double *nonzeros, bool truncate=true)
Print default style.
void export_code(const std::string &lang, std::ostream &stream=casadi::uout(), const Dict &options=Dict()) const
Export matrix in specific language.
Input instruction.
Base class for FunctionInternal and LinsolInternal.
bool verbose_
Verbose printout.
void clear_mem()
Clear all memory (called from destructor)
The basic scalar symbolic class of CasADi.
Definition: sx_elem.hpp:75
Helper class for Serialization.
void version(const std::string &name, int v)
void pack(const Sparsity &e)
Serializes an object to the output stream.
std::string class_name() const
Get class name.
casadi_int nnz() const
Get the number of (structural) non-zeros.
Definition: sparsity.cpp:148
void export_code(const std::string &lang, std::ostream &stream=casadi::uout(), const Dict &options=Dict()) const
Export matrix in specific language.
Definition: sparsity.cpp:778
Internal node class for the base class of SXFunction and MXFunction.
Definition: x_function.hpp:57
std::vector< MX > out_
Outputs of the function (needed for symbolic calculations)
Definition: x_function.hpp:262
void delayed_deserialize_members(DeserializingStream &s)
Definition: x_function.hpp:299
void init(const Dict &opts) override
Initialize.
Definition: x_function.hpp:319
virtual bool isInput(const std::vector< MX > &arg) const
Helper function: Check if a vector equals ex_in.
std::vector< MX > in_
Inputs of the function (needed for symbolic calculations)
Definition: x_function.hpp:257
void delayed_serialize_members(SerializingStream &s) const
Helper functions to avoid recursion limit.
Definition: x_function.hpp:305
void serialize_body(SerializingStream &s) const override
Serialize an object without type information.
Definition: x_function.hpp:311
static void sort_depth_first(std::stack< MXNode * > &s, std::vector< MXNode * > &nodes)
Topological sorting of the nodes based on Depth-First Search (DFS)
Definition: x_function.hpp:395
The casadi namespace.
Definition: archiver.cpp:28
bool is_equal(double x, double y, casadi_int depth=0)
Definition: calculus.hpp:281
std::vector< casadi_int > range(casadi_int start, casadi_int stop, casadi_int step, casadi_int len)
Range function.
std::string join(const std::vector< std::string > &l, const std::string &delim)
unsigned long long bvec_t
std::vector< MX > MXVector
Definition: mx.hpp:1006
@ OT_DOUBLEVECTOR
std::string str(const T &v)
String representation, any type.
GenericType::Dict Dict
C++ equivalent of Python's dict or MATLAB's struct.
T * get_ptr(std::vector< T > &v)
Get a pointer to the data contained in the vector.
bool is_zero(const T &x)
std::ostream & uout()
@ OP_DIAGCAT
Definition: calculus.hpp:130
@ OP_NE
Definition: calculus.hpp:70
@ OP_HORZCAT
Definition: calculus.hpp:124
@ OP_VERTCAT
Definition: calculus.hpp:127
@ OP_IF_ELSE_ZERO
Definition: calculus.hpp:71
@ OP_MMAX
Definition: calculus.hpp:181
@ OP_AND
Definition: calculus.hpp:70
@ OP_INV
Definition: calculus.hpp:73
@ OP_INVERSE
Definition: calculus.hpp:112
@ OP_OUTPUT
Definition: calculus.hpp:82
@ OP_MMIN
Definition: calculus.hpp:181
@ OP_SETNONZEROS
Definition: calculus.hpp:163
@ OP_VERTSPLIT
Definition: calculus.hpp:136
@ OP_CONST
Definition: calculus.hpp:79
@ OP_OR
Definition: calculus.hpp:70
@ OP_TWICE
Definition: calculus.hpp:67
@ OP_INPUT
Definition: calculus.hpp:82
@ OP_LIFT
Definition: calculus.hpp:191
@ OP_DETERMINANT
Definition: calculus.hpp:109
@ OP_DOT
Definition: calculus.hpp:115
@ OP_POW
Definition: calculus.hpp:66
@ OP_PROJECT
Definition: calculus.hpp:169
@ OP_ADDNONZEROS
Definition: calculus.hpp:157
@ OP_PARAMETER
Definition: calculus.hpp:85
@ OP_FABS
Definition: calculus.hpp:71
@ OP_BILIN
Definition: calculus.hpp:118
@ OP_MTIMES
Definition: calculus.hpp:100
@ OP_NORM1
Definition: calculus.hpp:178
@ OP_CALL
Definition: calculus.hpp:88
@ OP_NORM2
Definition: calculus.hpp:178
@ OP_RESHAPE
Definition: calculus.hpp:142
@ OP_DIV
Definition: calculus.hpp:65
@ OP_TRANSPOSE
Definition: calculus.hpp:106
@ OP_SOLVE
Definition: calculus.hpp:103
@ OP_RANK1
Definition: calculus.hpp:121
@ OP_CONSTPOW
Definition: calculus.hpp:66
@ OP_NOT
Definition: calculus.hpp:70
@ OP_MUL
Definition: calculus.hpp:65
@ OP_HORZSPLIT
Definition: calculus.hpp:133
@ OP_SQ
Definition: calculus.hpp:67
@ OP_NORMF
Definition: calculus.hpp:178
@ OP_GETNONZEROS
Definition: calculus.hpp:151
@ OP_NORMINF
Definition: calculus.hpp:178
An element of the algorithm, namely an MX node.
Definition: mx_function.hpp:45
MX data
Data associated with the operation.
Definition: mx_function.hpp:50
std::vector< casadi_int > arg
Work vector indices of the arguments.
Definition: mx_function.hpp:53
casadi_int op
Operator index.
Definition: mx_function.hpp:47
std::vector< casadi_int > res
Work vector indices of the results.
Definition: mx_function.hpp:56
Options metadata for a class.
Definition: options.hpp:40
static std::string print(unsigned char op, const std::string &x, const std::string &y)
Print.
Definition: calculus.hpp:1641