optistack_internal.hpp
1 /*
2  * This file is part of CasADi.
3  *
4  * CasADi -- A symbolic framework for dynamic optimization.
5  * Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl,
6  * KU Leuven. All rights reserved.
7  * Copyright (C) 2011-2014 Greg Horn
8  *
9  * CasADi is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 3 of the License, or (at your option) any later version.
13  *
14  * CasADi is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with CasADi; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  *
23  */
24 
25 #ifndef CASADI_OPTISTACK_INTERNAL_HPP
26 #define CASADI_OPTISTACK_INTERNAL_HPP
27 
28 #include "optistack.hpp"
29 #include "shared_object.hpp"
30 
31 namespace casadi {
32 
33 #ifndef SWIG
35 template<class T>
37 public:
38  null_ptr_on_copy() : ptr_(nullptr) {}
39  null_ptr_on_copy(const null_ptr_on_copy& rhs) : ptr_(nullptr) {}
40  void operator=(T* ptr) { ptr_ = ptr; }
41  T* operator->() { return ptr_; }
42  operator bool() const { return ptr_; }
43 private:
44  T* ptr_;
45 };
46 #endif
47 
55 class CASADI_EXPORT OptiNode :
56  public SharedObjectInternal {
57  friend class InternalOptiCallback;
58 public:
59 
61  OptiNode(const std::string& problem_type);
62 
64  ~OptiNode();
65 
67  MX variable(casadi_int n=1, casadi_int m=1, const std::string& attribute="full");
68  MX variable(const Sparsity& sp, const std::string& attribute="full");
69  MX variable(const MX& symbol, const std::string& attribute="full");
70 
72  MX parameter(casadi_int n=1, casadi_int m=1, const std::string& attribute="full");
73 
75  MX parameter(const Sparsity& sp, const std::string& attribute="full");
76 
77  MX parameter(const MX& symbol, const std::string& attribute="full");
78 
80  void minimize(const MX& f, double linear_scale=1);
81 
83  void subject_to(const MX& g, const DM& linear_scale=1, const Dict& options=Dict());
85  void subject_to();
86 
88  void solver(const std::string& solver,
89  const Dict& plugin_options=Dict(),
90  const Dict& solver_options=Dict());
91 
94  void set_initial(const MX& x, const DM& v);
95  void set_initial(const std::vector<MX>& assignments);
97 
99 
104  void set_value(const MX& x, const DM& v);
105  void set_value(const std::vector<MX>& assignments);
107 
109  void set_domain(const MX& x, const std::string& domain);
110 
112  void set_linear_scale(const MX& x, const DM& scale, const DM& offset);
113 
115  OptiSol solve(bool accept_limit);
116 
119  DM value(const MX& x,
120  const std::vector<MX>& values=std::vector<MX>(), bool scaled=false) const;
121  DM value(const DM& x,
122  const std::vector<MX>& values=std::vector<MX>(), bool scaled=false) const { return x; }
123  DM value(const SX& x,
124  const std::vector<MX>& values=std::vector<MX>(), bool scaled=false) const {
125  return DM::nan(x.sparsity());
126  }
128 
130  Opti copy() const;
131 
133  Dict stats() const;
134 
136  std::string return_status() const;
138  bool return_success(bool accept_limit) const;
139 
141  Function casadi_solver() const;
142 
146  Function scale_helper(const Function& h) const;
147 
149  std::vector<MX> initial() const;
150 
152  std::vector<MX> value_variables() const;
153  std::vector<MX> value_parameters() const;
154 
155  void callback_class(OptiCallback* callback);
156  void callback_class();
157  bool has_callback_class() const;
158 
160  bool is_parametric(const MX& expr) const;
161 
164  std::vector<MX> symvar() const;
165  std::vector<MX> symvar(const MX& expr) const;
166  std::vector<MX> symvar(const MX& expr, VariableType type) const;
168 
170  MetaCon canon_expr(const MX& expr, const DM& linear_scale=1) const;
171 
173  MetaVar get_meta(const MX& m) const;
174 
176  MetaCon get_meta_con(const MX& m) const;
177 
179  void set_meta(const MX& m, const MetaVar& meta);
180 
182  void set_meta_con(const MX& m, const MetaCon& meta);
183 
185  void update_user_dict(const MX& m, const Dict& meta);
186  Dict user_dict(const MX& m) const;
187 
189  MX dual(const MX& m) const;
190 
191  void assert_active_symbol(const MX& m) const;
192 
193  std::vector<MX> active_symvar(VariableType type) const;
194  std::vector<DM> active_values(VariableType type) const;
195  std::vector<DM> active_values(VariableType type,
196  const std::map< VariableType, std::vector<DM> >& store) const;
197 
198  MX x_lookup(casadi_int i) const;
199  MX g_lookup(casadi_int i) const;
200 
201  std::string x_describe(casadi_int i, const Dict& opts=Dict()) const;
202  std::string g_describe(casadi_int i, const Dict& opts=Dict()) const;
203  std::string describe(const MX& x, casadi_int indent=0, const Dict& opts=Dict()) const;
204 
205  void solve_prepare();
206  Function solver_construct(bool callback=true);
207  DMDict solve_actual(const DMDict& args);
208 
209  DMDict arg() const { return arg_; }
210  void res(const DMDict& res);
211  DMDict res() const { return res_; }
212  std::vector<MX> constraints() const { return g_; }
213  MX objective() const { return f_; }
214 
216  OptiAdvanced s = copy();
217  if (s.problem_dirty()) s.bake();
218  return s;
219  }
220 
221  std::string class_name() const override { return "OptiNode"; }
222 
224  casadi_int nx() const {
225  if (problem_dirty()) return baked_copy().nx();
226  return nlp_.at("x").size1();
227  }
228 
230  casadi_int np() const {
231  if (problem_dirty()) return baked_copy().np();
232  return nlp_.at("p").size1();
233  }
234 
236  casadi_int ng() const {
237  if (problem_dirty()) return baked_copy().ng();
238  return nlp_.at("g").size1();
239  }
240 
242  MX x() const {
243  if (problem_dirty()) return baked_copy().x();
244  return nlp_.at("x");
245  }
246 
248  MX p() const {
249  if (problem_dirty()) return baked_copy().p();
250  return nlp_.at("p");
251  }
252 
254  MX g() const {
255  if (problem_dirty()) return baked_copy().g();
256  return nlp_unscaled_.at("g");
257  }
258 
260  MX f() const {
261  if (problem_dirty()) return baked_copy().f();
262  return nlp_unscaled_.at("f");
263  }
264 
265  MX lbg() const {
266  if (problem_dirty()) return baked_copy().lbg();
267  return bounds_unscaled_lbg_;
268  }
269 
270  MX ubg() const {
271  if (problem_dirty()) return baked_copy().ubg();
272  return bounds_unscaled_ubg_;
273  }
274 
276  MX lam_g() const {
277  if (problem_dirty()) return baked_copy().lam_g();
278  return lam_;
279  }
280 
281  DM x_linear_scale() const {
282  if (problem_dirty()) return baked_copy().x_linear_scale();
283  return DM(linear_scale_);
284  }
286  if (problem_dirty()) return baked_copy().x_linear_scale_offset();
287  return DM(linear_scale_offset_);
288  }
289  DM g_linear_scale() const {
290  if (problem_dirty()) return baked_copy().g_linear_scale();
291  return DM(g_linear_scale_);
292  }
293  double f_linear_scale() const {
294  if (problem_dirty()) return baked_copy().f_linear_scale();
295  return f_linear_scale_;
296  }
297  void assert_empty() const;
298 
299  void show_infeasibilities(double tol=0, const Dict& opts=Dict()) const;
300 
304  Function to_function(const std::string& name,
305  const std::vector<MX>& args, const std::vector<MX>& res,
306  const std::vector<std::string>& name_in,
307  const std::vector<std::string>& name_out,
308  const Dict& opts);
309 
311  void disp(std::ostream& stream, bool more=false) const override;
312 
314  void bake();
315 
316  casadi_int instance_number() const;
317 
318  static OptiNode* create(const std::string& problem_type);
319 
321  void mark_problem_dirty(bool flag=true) { problem_dirty_=flag; mark_solver_dirty(); }
322  bool problem_dirty() const { return problem_dirty_; }
323 
325  void mark_solver_dirty(bool flag=true) { solver_dirty_=flag; mark_solved(false); }
326  bool solver_dirty() const { return solver_dirty_; }
327 
328  bool solved_;
329  void mark_solved(bool flag=true) { solved_ = flag;}
330  bool solved() const { return solved_; }
331 
332  void assert_solved() const;
333  void assert_baked() const;
334 
335  casadi_int g_index_reduce_g(casadi_int i) const;
336  casadi_int g_index_reduce_x(casadi_int i) const;
337  casadi_int g_index_unreduce_g(casadi_int i) const;
338 
339 private:
340 
341  static std::map<VariableType, std::string> VariableType2String_;
342  std::string variable_type_to_string(VariableType vt) const;
343 
344  bool parse_opti_name(const std::string& name, VariableType& vt) const;
345  void register_dual(MetaCon& meta);
346 
348  void set_value_internal(const MX& x, const DM& v,
349  std::map< VariableType, std::vector<DM> >& store);
350 
359  static std::vector<MX> ineq_unchain(const MX& a, bool& SWIG_OUTPUT(flipped));
360 
362  const MetaVar& meta(const MX& m) const;
364  MetaVar& meta(const MX& m);
365 
367  const MetaCon& meta_con(const MX& m) const;
369  MetaCon& meta_con(const MX& m);
370 
372  std::vector<MX> sort(const std::vector<MX>& v) const;
373 
375  void assert_has(const MX& m) const;
376 
377  bool has(const MX& m) const;
378 
380  void assert_has_con(const MX& m) const;
381 
382  bool has_con(const MX& m) const;
383 
384  // Data members
385 
387  std::map<MXNode*, MetaVar> meta_;
389  std::map<MXNode*, MetaCon> meta_con_;
390 
392  std::vector<MX> symbols_;
393 
394  // Which x entries are discrete?
395  std::vector<bool> discrete_;
396 
398  casadi_int count_;
399 
400  casadi_int count_var_;
401  casadi_int count_par_;
402  casadi_int count_dual_;
403 
405  std::map< VariableType, std::vector<DM> > store_initial_, store_latest_;
406 
408  std::map< VariableType, std::vector<DM> > store_linear_scale_, store_linear_scale_offset_;
409 
411  std::vector<bool> symbol_active_;
412 
414  Function solver_;
415 
416  mutable Dict stats_;
417  mutable std::vector<casadi_int> g_index_reduce_g_;
418  mutable std::vector<casadi_int> g_index_reduce_x_;
419  mutable std::vector<casadi_int> g_index_unreduce_g_;
420  mutable std::vector<casadi_int> target_x_;
421  mutable std::vector<bool> is_simple_;
422  mutable bool reduced_;
423 
425  DMDict res_;
426  DMDict arg_;
427  MXDict nlp_;
428  MXDict nlp_unscaled_;
429  MX lam_;
430  std::vector<double> linear_scale_;
431  std::vector<double> linear_scale_offset_;
432  std::vector<double> g_linear_scale_;
433  std::vector<double> h_linear_scale_;
434 
435  std::vector<casadi_int> index_all_to_g_;
436 
438  Function bounds_;
439  MX bounds_lbg_, bounds_unscaled_lbg_;
440  MX bounds_ubg_, bounds_unscaled_ubg_;
441  std::vector<bool> equality_;
442 
444  std::vector<MX> g_;
445 
447  MX f_;
448 
449  double f_linear_scale_;
450 
452  std::string problem_type_;
453 
454  null_ptr_on_copy<OptiCallback> user_callback_;
455  Function callback_;
456 
457  bool old_callback() const;
458 
459  std::string solver_name_;
460  Dict solver_options_;
461 
462  void assert_only_opti_symbols(const MX& e) const;
463  void assert_only_opti_nondual(const MX& e) const;
464 
465 
466  static casadi_int instance_count_;
467  casadi_int instance_number_;
468 
469 
470  std::string name_prefix() const;
471 
472  static std::string format_stacktrace(const Dict& stacktrace, casadi_int indent);
473 
474 };
475 
476 
477 } // namespace casadi
478 
479 #endif // CASADI_OPTISTACK_INTERNAL_HPP
Function object.
Definition: function.hpp:60
MX - Matrix expression.
Definition: mx.hpp:92
const Sparsity & sparsity() const
Const access the sparsity - reference to data member.
static Matrix< double > nan(const Sparsity &sp)
create a matrix with all nan
bool problem_dirty() const
Definition: optistack.cpp:793
void bake()
Fix the structure of the optimization problem.
Definition: optistack.cpp:778
A simplified interface for NLP modeling/solving.
std::vector< MX > constraints() const
MX g() const
Get all (scalarised) constraint expressions as a column vector.
OptiAdvanced baked_copy() const
MX x() const
Get all (scalarised) decision variables as a symbolic column vector.
casadi_int nx() const
Number of (scalarised) decision variables.
casadi_int np() const
Number of (scalarised) parameters.
casadi_int ng() const
Number of (scalarised) constraints.
std::string class_name() const override
Readable name of the internal class.
DM value(const SX &x, const std::vector< MX > &values=std::vector< MX >(), bool scaled=false) const
bool problem_dirty() const
DM x_linear_scale_offset() const
void mark_problem_dirty(bool flag=true)
void mark_solver_dirty(bool flag=true)
MX p() const
Get all (scalarised) parameters as a symbolic column vector.
double f_linear_scale() const
MX lam_g() const
Get dual variables as a symbolic column vector.
MX f() const
Get objective expression.
void mark_solved(bool flag=true)
DM value(const DM &x, const std::vector< MX > &values=std::vector< MX >(), bool scaled=false) const
A simplified interface for NLP modeling/solving.
Definition: optistack.hpp:662
A simplified interface for NLP modeling/solving.
Definition: optistack.hpp:90
General sparsity class.
Definition: sparsity.hpp:106
Pointer that gets set to null when copied.
null_ptr_on_copy(const null_ptr_on_copy &rhs)
The casadi namespace.
Definition: archiver.cpp:28
std::map< std::string, MX > MXDict
Definition: mx.hpp:1009
void sort(const std::vector< T > &values, std::vector< T > &sorted_values, std::vector< casadi_int > &indices, bool invert_indices=false)
Sort the data in a vector.
GenericType::Dict Dict
C++ equivalent of Python's dict or MATLAB's struct.
void copy(const T1 *x, casadi_int n, T2 *y)
Matrix< double > DM
Definition: dm_fwd.hpp:33
std::map< std::string, DM > DMDict
Definition: dm_fwd.hpp:36