List of all members | Public Types | Public Member Functions | Static Public Member Functions | Public Attributes | Protected Member Functions | Friends
casadi::OptiNode Class Reference

A simplified interface for NLP modeling/solving. More...

#include <optistack_internal.hpp>

Detailed Description

Date
2017
Author
Joris Gillis, Erik Lambrechts

Extra doc: https://github.com/casadi/casadi/wiki/L_172

Definition at line 55 of file optistack_internal.hpp.

Inheritance diagram for casadi::OptiNode:
Inheritance graph
[legend]
Collaboration diagram for casadi::OptiNode:
Collaboration graph
[legend]

Public Types

using weak_ref_type = WeakRefInternal
 

Public Member Functions

 OptiNode (const std::string &problem_type)
 Create Opti Context. More...
 
 ~OptiNode ()
 Destructor. More...
 
MX variable (casadi_int n=1, casadi_int m=1, const std::string &attribute="full")
 Create a decision variable (symbol) More...
 
MX variable (const Sparsity &sp, const std::string &attribute="full")
 
MX variable (const MX &symbol, const std::string &attribute="full")
 
MX parameter (casadi_int n=1, casadi_int m=1, const std::string &attribute="full")
 Create a parameter (symbol); fixed during optimization. More...
 
MX parameter (const Sparsity &sp, const std::string &attribute="full")
 Create a parameter (symbol); fixed during optimization. More...
 
MX parameter (const MX &symbol, const std::string &attribute="full")
 
void minimize (const MX &f, double linear_scale=1)
 Set objective. More...
 
void subject_to (const MX &g, const DM &linear_scale=1, const Dict &options=Dict())
 brief Add constraints More...
 
void subject_to ()
 Clear constraints. More...
 
void solver (const std::string &solver, const Dict &plugin_options=Dict(), const Dict &solver_options=Dict())
 Solver. More...
 
void set_domain (const MX &x, const std::string &domain)
 Set domain of variable. More...
 
void set_linear_scale (const MX &x, const DM &scale, const DM &offset)
 Set scale of a decision variable. More...
 
OptiSol solve (bool accept_limit)
 Crunch the numbers; solve the problem. More...
 
Opti copy () const
 Copy. More...
 
Dict stats () const
 Get statistics. More...
 
std::string return_status () const
 Get return status of solver. More...
 
bool return_success (bool accept_limit) const
 Did the solver return successfully? More...
 
Function casadi_solver () const
 Get the underlying CasADi solver of the Opti stack. More...
 
Function scale_helper (const Function &h) const
 Scale a helper function constructed via opti.x, opti.g, ... More...
 
std::vector< MXinitial () const
 get assignment expressions for initial values More...
 
std::vector< MXvalue_variables () const
 get assignment expressions for latest values More...
 
std::vector< MXvalue_parameters () const
 
void callback_class (OptiCallback *callback)
 
void callback_class ()
 
bool has_callback_class () const
 
bool is_parametric (const MX &expr) const
 return true if expression is only dependant on Opti parameters, not variables More...
 
MetaCon canon_expr (const MX &expr, const DM &linear_scale=1) const
 Interpret an expression (for internal use only) More...
 
MetaVar get_meta (const MX &m) const
 Get meta-data of symbol (for internal use only) More...
 
MetaCon get_meta_con (const MX &m) const
 Get meta-data of symbol (for internal use only) More...
 
void set_meta (const MX &m, const MetaVar &meta)
 Set meta-data of an expression. More...
 
void set_meta_con (const MX &m, const MetaCon &meta)
 Set meta-data of an expression. More...
 
void update_user_dict (const MX &m, const Dict &meta)
 add meta-data of an expression More...
 
Dict user_dict (const MX &m) const
 
MX dual (const MX &m) const
 get the dual variable More...
 
void assert_active_symbol (const MX &m) const
 
std::vector< MXactive_symvar (VariableType type) const
 
std::vector< DMactive_values (VariableType type) const
 
std::vector< DMactive_values (VariableType type, const std::map< VariableType, std::vector< DM > > &store) const
 
MX x_lookup (casadi_int i) const
 
MX g_lookup (casadi_int i) const
 
std::string x_describe (casadi_int i, const Dict &opts=Dict()) const
 
std::string g_describe (casadi_int i, const Dict &opts=Dict()) const
 
std::string describe (const MX &x, casadi_int indent=0, const Dict &opts=Dict()) const
 
void solve_prepare ()
 
Function solver_construct (bool callback=true)
 
DMDict solve_actual (const DMDict &args)
 
DMDict arg () const
 
void res (const DMDict &res)
 
DMDict res () const
 
std::vector< MXconstraints () const
 
MX objective () const
 
OptiAdvanced baked_copy () const
 
std::string class_name () const override
 Readable name of the internal class. More...
 
casadi_int nx () const
 Number of (scalarised) decision variables. More...
 
casadi_int np () const
 Number of (scalarised) parameters. More...
 
casadi_int ng () const
 Number of (scalarised) constraints. More...
 
MX x () const
 Get all (scalarised) decision variables as a symbolic column vector. More...
 
MX p () const
 Get all (scalarised) parameters as a symbolic column vector. More...
 
MX g () const
 Get all (scalarised) constraint expressions as a column vector. More...
 
MX f () const
 Get objective expression. More...
 
MX lbg () const
 
MX ubg () const
 
MX lam_g () const
 Get dual variables as a symbolic column vector. More...
 
DM x_linear_scale () const
 
DM x_linear_scale_offset () const
 
DM g_linear_scale () const
 
double f_linear_scale () const
 
void assert_empty () const
 
void show_infeasibilities (double tol=0, const Dict &opts=Dict()) const
 
Function to_function (const std::string &name, const std::vector< MX > &args, const std::vector< MX > &res, const std::vector< std::string > &name_in, const std::vector< std::string > &name_out, const Dict &opts)
 Create a CasADi Function from the Opti solver. More...
 
void disp (std::ostream &stream, bool more=false) const override
 Print representation. More...
 
void bake ()
 Fix the structure of the optimization problem. More...
 
casadi_int instance_number () const
 
void mark_problem_dirty (bool flag=true)
 
bool problem_dirty () const
 
void mark_solver_dirty (bool flag=true)
 
bool solver_dirty () const
 
void mark_solved (bool flag=true)
 
bool solved () const
 
void assert_solved () const
 
void assert_baked () const
 
casadi_int g_index_reduce_g (casadi_int i) const
 
casadi_int g_index_reduce_x (casadi_int i) const
 
casadi_int g_index_unreduce_g (casadi_int i) const
 
casadi_int getCount () const
 Get the reference count. More...
 
std::string debug_repr (const SharedObjectInternal *) const
 
GenericWeakRef< SharedObject, SharedObjectInternal > * weak ()
 Get a weak reference to the object. More...
 
void set_initial (const MX &x, const DM &v)
 
void set_initial (const std::vector< MX > &assignments)
 
void set_value (const MX &x, const DM &v)
 Set value of parameter. More...
 
void set_value (const std::vector< MX > &assignments)
 Set value of parameter. More...
 
DM value (const MX &x, const std::vector< MX > &values=std::vector< MX >(), bool scaled=false) const
 
DM value (const DM &x, const std::vector< MX > &values=std::vector< MX >(), bool scaled=false) const
 
DM value (const SX &x, const std::vector< MX > &values=std::vector< MX >(), bool scaled=false) const
 
std::vector< MXsymvar () const
 
std::vector< MXsymvar (const MX &expr) const
 
std::vector< MXsymvar (const MX &expr, VariableType type) const
 

Static Public Member Functions

static OptiNodecreate (const std::string &problem_type)
 

Public Attributes

bool problem_dirty_
 
bool solver_dirty_
 
bool solved_
 

Protected Member Functions

void initSingleton ()
 
void destroySingleton ()
 
shared_from_this ()
 Get a shared object from the current internal object. More...
 
const B shared_from_this () const
 Get a shared object from the current internal object. More...
 

Friends

class InternalOptiCallback
 

Member Typedef Documentation

◆ weak_ref_type

Definition at line 152 of file shared_object.hpp.

Constructor & Destructor Documentation

◆ OptiNode()

casadi::OptiNode::OptiNode ( const std::string &  problem_type)

Definition at line 254 of file optistack_internal.cpp.

254  :
255  count_(0), count_var_(0), count_par_(0), count_dual_(0) {
256  f_ = 0;
257  f_linear_scale_ = 1;
258  instance_number_ = instance_count_++;
259  user_callback_ = nullptr;
260  store_initial_[OPTI_VAR] = {};
261  store_initial_[OPTI_PAR] = {};
262  store_initial_[OPTI_DUAL_G] = {};
263  store_latest_[OPTI_VAR] = {};
264  store_latest_[OPTI_DUAL_G] = {};
265  casadi_assert(problem_type=="nlp" || problem_type=="conic",
266  "Specified problem type '" + problem_type + "'unknown. "
267  "Choose 'nlp' (default) or 'conic'.");
268  problem_type_ = problem_type;
270 }
void mark_problem_dirty(bool flag=true)
@ OPTI_VAR
Definition: optistack.hpp:496
@ OPTI_DUAL_G
Definition: optistack.hpp:498
@ OPTI_PAR
Definition: optistack.hpp:497

References mark_problem_dirty(), casadi::OPTI_DUAL_G, casadi::OPTI_PAR, and casadi::OPTI_VAR.

Referenced by copy(), and create().

◆ ~OptiNode()

casadi::OptiNode::~OptiNode ( )

Definition at line 272 of file optistack_internal.cpp.

272  {
273 }

Member Function Documentation

◆ active_symvar()

std::vector< MX > casadi::OptiNode::active_symvar ( VariableType  type) const

Definition at line 1623 of file optistack_internal.cpp.

1623  {
1624  if (symbol_active_.empty()) return std::vector<MX>{};
1625  std::vector<MX> ret;
1626  for (const auto& s : symbols_) {
1627  if (symbol_active_[meta(s).count] && meta(s).type==type)
1628  ret.push_back(s);
1629  }
1630  return ret;
1631 }

Referenced by bake(), res(), solve_prepare(), to_function(), and x_lookup().

◆ active_values() [1/2]

std::vector< DM > casadi::OptiNode::active_values ( VariableType  type) const

Definition at line 1633 of file optistack_internal.cpp.

1633  {
1634  return active_values(type, store_initial_);
1635 }
std::vector< DM > active_values(VariableType type) const

Referenced by bake(), solve_prepare(), and to_function().

◆ active_values() [2/2]

std::vector< DM > casadi::OptiNode::active_values ( VariableType  type,
const std::map< VariableType, std::vector< DM > > &  store 
) const

Definition at line 1637 of file optistack_internal.cpp.

1638  {
1639  if (symbol_active_.empty()) return std::vector<DM>{};
1640  std::vector<DM> ret;
1641  for (const auto& s : symbols_) {
1642  if (symbol_active_[meta(s).count] && meta(s).type==type) {
1643  ret.push_back(store.at(meta(s).type)[meta(s).i]);
1644  }
1645  }
1646  return ret;
1647 }

◆ arg()

DMDict casadi::OptiNode::arg ( ) const
inline

Definition at line 209 of file optistack_internal.hpp.

209 { return arg_; }

Referenced by scale_helper(), solve_actual(), solve_prepare(), to_function(), and value().

◆ assert_active_symbol()

void casadi::OptiNode::assert_active_symbol ( const MX m) const

Definition at line 1465 of file optistack_internal.cpp.

1465  {
1466  assert_has(m);
1467  assert_baked();
1468  casadi_assert(symbol_active_[meta(m).count], "Opti symbol is not used in Solver."
1469  " It does not make sense to assign a value to it:\n" + describe(m, 1));
1470 }
std::string describe(const MX &x, casadi_int indent=0, const Dict &opts=Dict()) const

References assert_baked(), and describe().

◆ assert_baked()

void casadi::OptiNode::assert_baked ( ) const

Definition at line 1171 of file optistack_internal.cpp.

1171  {
1172  casadi_assert(!problem_dirty(),
1173  "This action is forbidden since you have not baked the Opti stack yet "
1174  "(with calling 'solve').");
1175 }
bool problem_dirty() const

References problem_dirty().

Referenced by assert_active_symbol().

◆ assert_empty()

void casadi::OptiNode::assert_empty ( ) const

Definition at line 1177 of file optistack_internal.cpp.

1177  {
1178  casadi_assert_dev(g_.empty());
1179  casadi_assert_dev(f_.is_empty());
1180 }
bool is_empty(bool both=false) const
Check if the sparsity is empty, i.e. if one of the dimensions is zero.

References casadi::GenericMatrix< MatType >::is_empty().

◆ assert_solved()

void casadi::OptiNode::assert_solved ( ) const

Definition at line 1165 of file optistack_internal.cpp.

1165  {
1166  casadi_assert(solved(),
1167  "This action is forbidden since you have not solved the Opti stack yet "
1168  "(with calling 'solve').");
1169 }

References solved().

Referenced by stats(), and value().

◆ bake()

void casadi::OptiNode::bake ( )

Definition at line 724 of file optistack_internal.cpp.

724  {
725  casadi_assert(!f_.is_empty() || !g_.empty(),
726  "You need to specify at least an objective (y calling 'minimize'), "
727  "or a constraint (by calling 'subject_to').");
728 
729  symbol_active_.clear();
730  symbol_active_.resize(symbols_.size());
731 
732  // Gather all expressions
733  MX total_expr = vertcat(f_, veccat(g_));
734 
735  // Categorize the symbols appearing in those expressions
736  for (const auto& d : symvar(total_expr))
737  symbol_active_[meta(d).count] = true;
738 
739  std::vector<MX> x = active_symvar(OPTI_VAR);
740  for (casadi_int i=0;i<x.size();++i) meta(x[i]).active_i = i;
741 
742  casadi_int offset = 0;
743  for (const auto& v : x) {
744  meta(v).start = offset;
745  offset+= v.nnz();
746  meta(v).stop = offset;
747  }
748  std::vector<MX> p = active_symvar(OPTI_PAR);
749  for (casadi_int i=0;i<p.size();++i) meta(p[i]).active_i = i;
750 
751  // Fill the nlp definition
752  nlp_["x"] = veccat(x);
753  nlp_["p"] = veccat(p);
754 
755  nlp_unscaled_["x"] = veccat(x);
756  nlp_unscaled_["p"] = veccat(p);
757 
758  discrete_.clear();
759  for (const MX& e : x) {
760  discrete_.insert(discrete_.end(), e.nnz(), meta(e).domain == OPTI_DOMAIN_INTEGER);
761  }
762 
763  nlp_["f"] = f_;
764  nlp_unscaled_["f"] = f_;
765 
766  offset = 0;
767  for (casadi_int i=0;i<g_.size();++i) {
768  MetaCon& r = meta_con(g_[i]);
769  MetaVar& r2 = meta(r.dual_canon);
770  symbol_active_[r2.count] = true;
771 
772  // Compute offsets for this constraint:
773  // location into the global constraint variable
774  r.start = offset;
775  offset+= r.canon.nnz();
776  r.stop = offset;
777 
778  r2.start = r.start;
779  r2.stop = r.stop;
780 
781  }
782  index_all_to_g_.resize(offset);
783  offset = 0;
784  casadi_int offset_g = 0;
785  for (const auto& g : g_) {
786  const MetaCon& r = meta_con(g);
787  if (r.type==OPTI_PSD) {
788  for (casadi_int i=0;i<r.stop-r.start;++i) {
789  index_all_to_g_[r.start+i] = -1;
790  }
791  } else {
792  for (casadi_int i=0;i<r.stop-r.start;++i) {
793  index_all_to_g_[r.start+i] = offset_g+i;
794  }
795  offset_g += r.canon.nnz();
796  }
797  }
798 
799  std::vector<MX> lam = active_symvar(OPTI_DUAL_G);
800  for (casadi_int i=0;i<lam.size();++i) meta(lam[i]).active_i = i;
801 
802  lam_ = veccat(lam);
803 
804  // Collect bounds and canonical form of constraints
805  std::vector<MX> g_all, g_unscaled_all;
806  std::vector<MX> h_all, h_unscaled_all;
807  std::vector<MX> lbg_all, lbg_unscaled_all;
808  std::vector<MX> ubg_all, ubg_unscaled_all;
809 
810  g_linear_scale_.clear();
811  h_linear_scale_.clear();
812  std::vector<DM> g_linear_scale, h_linear_scale;
813 
814  equality_.clear();
815  for (const auto& g : g_) {
816  if (meta_con(g).type==OPTI_PSD) {
817  h_all.push_back(meta_con(g).canon/meta_con(g).linear_scale);
818  if (meta_con(g).canon.numel()==meta_con(g).linear_scale.numel()) {
819  h_linear_scale.push_back(meta_con(g).linear_scale);
820  } else {
821  casadi_assert_dev(meta_con(g).linear_scale.numel()==1);
822  h_linear_scale.push_back(DM::ones(meta_con(g).canon.sparsity())*meta_con(g).linear_scale);
823  }
824  h_unscaled_all.push_back(meta_con(g).canon);
825  } else {
826  g_all.push_back(meta_con(g).canon/meta_con(g).linear_scale);
827  if (meta_con(g).canon.numel()==meta_con(g).linear_scale.numel()) {
828  g_linear_scale.push_back(meta_con(g).linear_scale);
829  } else {
830  casadi_assert_dev(meta_con(g).linear_scale.numel()==1);
831  g_linear_scale.push_back(DM::ones(meta_con(g).canon.sparsity())*meta_con(g).linear_scale);
832  }
833  g_unscaled_all.push_back(meta_con(g).canon);
834  lbg_all.push_back(meta_con(g).lb/meta_con(g).linear_scale);
835  lbg_unscaled_all.push_back(meta_con(g).lb);
836  ubg_all.push_back(meta_con(g).ub/meta_con(g).linear_scale);
837  ubg_unscaled_all.push_back(meta_con(g).ub);
838 
839  equality_.insert(equality_.end(),
840  meta_con(g).canon.numel(),
841  meta_con(g).type==OPTI_EQUALITY || meta_con(g).type==OPTI_GENERIC_EQUALITY);
842  }
843  }
844 
845  nlp_["g"] = veccat(g_all);
846  g_linear_scale_ = veccat(g_linear_scale).nonzeros();
847  nlp_unscaled_["g"] = veccat(g_unscaled_all);
848  if (problem_type_=="conic") {
849  nlp_["h"] = diagcat(h_all);
850  nlp_unscaled_["h"] = diagcat(h_unscaled_all);
851  h_linear_scale_ = veccat(h_linear_scale).nonzeros();
852  }
853 
854  // Get scaling data
855  std::vector<DM> linear_scale = active_values(OPTI_VAR, store_linear_scale_);
856  std::vector<DM> linear_scale_offset = active_values(OPTI_VAR, store_linear_scale_offset_);
857 
858  linear_scale_ = veccat(linear_scale).nonzeros();
859  linear_scale_offset_ = veccat(linear_scale_offset).nonzeros();
860 
861  // Unscaled version of x
862  std::vector<MX> x_unscaled(x.size());
863  for (casadi_int i=0;i<x.size();++i) {
864  x_unscaled[i] = x[i]*linear_scale[i] + linear_scale_offset[i];
865  }
866 
867  // Perform substitution
868  std::vector<MX> expr = {nlp_["f"], nlp_["g"]};
869  if (problem_type_=="conic") expr.push_back(nlp_["h"]);
870  std::vector<MX> fgh = substitute(expr, x, x_unscaled);
871  nlp_["f"] = fgh[0];
872  nlp_["g"] = fgh[1];
873  if (problem_type_=="conic") {
874  nlp_["h"] = fgh[2];
875  }
876 
877  // Scale of objective
878  nlp_["f"] = nlp_["f"]/f_linear_scale_;
879 
880  // Create bounds helper function
881  MXDict bounds;
882  bounds["p"] = nlp_["p"];
883  bounds_lbg_ = veccat(lbg_all);
884  bounds_ubg_ = veccat(ubg_all);
885  bounds_unscaled_lbg_ = veccat(lbg_unscaled_all);
886  bounds_unscaled_ubg_ = veccat(ubg_unscaled_all);
887 
888  bounds["lbg"] = bounds_lbg_;
889  bounds["ubg"] = bounds_ubg_;
890 
891  bounds_ = Function("bounds", bounds, {"p"}, {"lbg", "ubg"});
892  mark_problem_dirty(false);
893 }
std::pair< casadi_int, casadi_int > size() const
Get the shape.
static MatType ones(casadi_int nrow=1, casadi_int ncol=1)
Create a dense matrix or a matrix with specified sparsity with all entries one.
std::vector< MX > active_symvar(VariableType type) const
MX g() const
Get all (scalarised) constraint expressions as a column vector.
MX x() const
Get all (scalarised) decision variables as a symbolic column vector.
std::vector< MX > symvar() const
MX p() const
Get all (scalarised) parameters as a symbolic column vector.
std::map< std::string, MX > MXDict
Definition: mx.hpp:1009
@ OPTI_DOMAIN_INTEGER
Definition: optistack.hpp:502
@ OPTI_EQUALITY
Definition: optistack.hpp:490
@ OPTI_GENERIC_EQUALITY
Definition: optistack.hpp:488
@ OPTI_PSD
Definition: optistack.hpp:493
casadi_int active_i
Definition: optistack.hpp:533
casadi_int count
Definition: optistack.hpp:531

References casadi::MetaVar::active_i, active_symvar(), active_values(), casadi::MetaCon::canon, casadi::MetaVar::count, casadi::MetaCon::dual_canon, g(), g_linear_scale(), casadi::GenericMatrix< MatType >::is_empty(), mark_problem_dirty(), casadi::GenericMatrix< MatType >::nnz(), casadi::GenericMatrix< MatType >::ones(), casadi::OPTI_DOMAIN_INTEGER, casadi::OPTI_DUAL_G, casadi::OPTI_EQUALITY, casadi::OPTI_GENERIC_EQUALITY, casadi::OPTI_PAR, casadi::OPTI_PSD, casadi::OPTI_VAR, p(), casadi::GenericMatrix< MatType >::size(), casadi::IndexAbstraction::start, casadi::IndexAbstraction::stop, symvar(), casadi::MetaCon::type, and x().

Referenced by solve(), and solver_construct().

◆ baked_copy()

OptiAdvanced casadi::OptiNode::baked_copy ( ) const
inline

Definition at line 215 of file optistack_internal.hpp.

215  {
216  OptiAdvanced s = copy();
217  if (s.problem_dirty()) s.bake();
218  return s;
219  }
Opti copy() const
Copy.

References casadi::OptiAdvanced::bake(), casadi::copy(), and casadi::OptiAdvanced::problem_dirty().

Referenced by casadi::OptiAdvanced::baked_copy(), describe(), g_describe(), g_lookup(), scale_helper(), to_function(), x_describe(), and x_lookup().

◆ callback_class() [1/2]

void casadi::OptiNode::callback_class ( )

Definition at line 103 of file optistack_internal.cpp.

103  {
104  user_callback_ = nullptr;
105 }

◆ callback_class() [2/2]

void casadi::OptiNode::callback_class ( OptiCallback callback)

Definition at line 99 of file optistack_internal.cpp.

99  {
100  user_callback_ = callback;
101 }

◆ canon_expr()

MetaCon casadi::OptiNode::canon_expr ( const MX expr,
const DM linear_scale = 1 
) const

Definition at line 1031 of file optistack_internal.cpp.

1031  {
1032  MX c = expr;
1033 
1034  MetaCon con;
1035  con.original = expr;
1036  casadi_assert(linear_scale.is_scalar() || linear_scale.size()==expr.size(),
1037  "Linear scale must have the same size as the expression. "
1038  "You got linear_scale " + con.linear_scale.dim() + " while " + expr.dim() + " is expected.");
1039  con.linear_scale = linear_scale;
1040 
1041  if (c.is_op(OP_LE) || c.is_op(OP_LT)) { // Inequalities
1042  std::vector<MX> ret;
1043  bool flipped;
1044  std::vector<MX> args = ineq_unchain(c, flipped);
1045  std::vector<bool> parametric;
1046  for (auto &a : args) parametric.push_back(is_parametric(a));
1047 
1048  if (args.size()==2 && (parametric[0] || parametric[1])) {
1049  // case: g(x,p) <= bound(p)
1050  MX e = args[0]-args[1];
1051  if (e.is_vector()) {
1052  casadi_assert(!parametric[0] || !parametric[1],
1053  "Constraint must contain decision variables.");
1054  if (problem_type_=="conic") {
1055  if (args[0].op()==OP_NORMF || args[0].op()==OP_NORM2) {
1056  args[0] = -soc(args[0].dep(), args[1]);
1057  args[1] = 0;
1058  }
1059  } else {
1060  con.type = OPTI_INEQUALITY;
1061  if (parametric[0]) {
1062  con.lb = args[0]*DM::ones(e.sparsity());
1063  con.ub = inf*DM::ones(e.sparsity());
1064  con.canon = args[1]*DM::ones(e.sparsity());
1065  } else {
1066  con.lb = -inf*DM::ones(e.sparsity());
1067  con.ub = args[1]*DM::ones(e.sparsity());
1068  con.canon = args[0]*DM::ones(e.sparsity());
1069  }
1070  return con;
1071  }
1072  }
1073  // Fall through to generic inequalities
1074  } else if (args.size()==3 && parametric[0] && parametric[2]) {
1075  // lb(p) <= g(x,p) <= ub(p)
1076  con.type = OPTI_DOUBLE_INEQUALITY;
1077  con.lb = args[0]*DM::ones(args[1].sparsity());
1078  con.ub = args[2]*DM::ones(args[1].sparsity());
1079  con.canon = args[1]*DM::ones(args[1].sparsity());
1080  con.flipped = flipped;
1081  con.n = 2;
1082  return con;
1083  }
1084 
1085  bool type_known = false;
1086  for (casadi_int j=0;j<args.size()-1;++j) {
1087  MX e = args[j]-args[j+1];
1088  if (problem_type_=="conic") {
1089  if (args[j].op()==OP_NORMF || args[j].op()==OP_NORM2) {
1090  args[j] = -soc(args[j].dep(), args[j+1]);
1091  args[j+1] = 0;
1092  e = args[j]-args[j+1];
1093  }
1094  }
1095  if (e.is_vector()) {
1096  // g1(x,p) <= g2(x,p)
1097  ret.push_back(e);
1098  casadi_assert_dev(!type_known || con.type==OPTI_GENERIC_INEQUALITY);
1099  type_known = true;
1100  con.type = OPTI_GENERIC_INEQUALITY;
1101  con.flipped = flipped;
1102  } else {
1103  // A(x,p) >= b(p)
1104  MX a = args[j+1];
1105  MX b = args[j];
1106  e = a-b;
1107 
1108  casadi_assert(e.size1()==e.size2(),
1109  "Matrix inequalities must be square. Did you mean element-wise inequality instead?");
1110  if (a.is_scalar()) a*= MX::eye(e.size1());
1111  if (b.is_scalar()) b*= MX::eye(e.size1());
1112  e = a-b;
1113 
1114  ret.push_back(e);
1115  casadi_assert_dev(!type_known || con.type==OPTI_PSD);
1116  type_known = true;
1117  con.type = OPTI_PSD;
1118  }
1119  }
1120 
1121  if (con.type==OPTI_GENERIC_INEQUALITY) {
1122  con.canon = veccat(ret);
1123  con.lb = -inf*DM::ones(con.canon.sparsity());
1124  con.ub = DM::zeros(con.canon.sparsity());
1125  con.n = ret.size();
1126  if (!con.linear_scale.is_scalar()) {
1127  con.linear_scale = repmat(con.linear_scale, ret.size(), 1);
1128  }
1129  } else {
1130  con.canon = diagcat(ret);
1131  con.n = ret.size();
1132  }
1133  return con;
1134  } else if (c.is_op(OP_EQ)) { // Inequalities
1135  casadi_assert(!is_parametric(c.dep(0)) || !is_parametric(c.dep(1)),
1136  "Constraint must contain decision variables.");
1137  MX e = c.dep(0)-c.dep(1);
1138  if (is_parametric(c.dep(0))) {
1139  con.canon = c.dep(1)*DM::ones(e.sparsity());
1140  con.lb = c.dep(0)*DM::ones(e.sparsity());
1141  con.type = OPTI_EQUALITY;
1142  casadi_assert(c.dep(0).size1()<=c.dep(1).size1() && c.dep(0).size2()<=c.dep(1).size2(),
1143  "Constraint shape mismatch.");
1144  } else if (is_parametric(c.dep(1))) {
1145  con.canon = c.dep(0)*DM::ones(e.sparsity());
1146  con.lb = c.dep(1)*DM::ones(e.sparsity());
1147  con.type = OPTI_EQUALITY;
1148  casadi_assert(c.dep(1).size1()<=c.dep(0).size1() && c.dep(1).size2()<=c.dep(0).size2(),
1149  "Constraint shape mismatch.");
1150  } else {
1151  con.lb = DM::zeros(e.sparsity());
1152  con.canon = e;
1153  con.type = OPTI_GENERIC_EQUALITY;
1154  }
1155  con.ub = con.lb;
1156  return con;
1157  } else { // Something else
1158  con.type = OPTI_UNKNOWN;
1159  con.canon = c;
1160  return con;
1161  }
1162 
1163 }
static MatType zeros(casadi_int nrow=1, casadi_int ncol=1)
Create a dense matrix or a matrix with specified sparsity with all entries zero.
static MX eye(casadi_int n)
Identity matrix.
Definition: mx.cpp:580
bool is_parametric(const MX &expr) const
return true if expression is only dependant on Opti parameters, not variables
const double inf
infinity
Definition: calculus.hpp:50
@ OPTI_DOUBLE_INEQUALITY
Definition: optistack.hpp:492
@ OPTI_INEQUALITY
Definition: optistack.hpp:491
@ OPTI_GENERIC_INEQUALITY
Definition: optistack.hpp:489
@ OPTI_UNKNOWN
Definition: optistack.hpp:494
@ OP_LT
Definition: calculus.hpp:70
@ OP_EQ
Definition: calculus.hpp:70
@ OP_NORM2
Definition: calculus.hpp:178
@ OP_LE
Definition: calculus.hpp:70
@ OP_NORMF
Definition: calculus.hpp:178

References casadi::MetaCon::canon, casadi::MX::dep(), casadi::GenericMatrix< MatType >::dim(), casadi::MX::eye(), casadi::MetaCon::flipped, casadi::inf, casadi::MX::is_op(), is_parametric(), casadi::GenericMatrix< MatType >::is_scalar(), casadi::GenericMatrix< MatType >::is_vector(), casadi::MetaCon::lb, casadi::MetaCon::linear_scale, casadi::MetaCon::n, casadi::GenericMatrix< MatType >::ones(), casadi::OP_EQ, casadi::OP_LE, casadi::OP_LT, casadi::OP_NORM2, casadi::OP_NORMF, casadi::OPTI_DOUBLE_INEQUALITY, casadi::OPTI_EQUALITY, casadi::OPTI_GENERIC_EQUALITY, casadi::OPTI_GENERIC_INEQUALITY, casadi::OPTI_INEQUALITY, casadi::OPTI_PSD, casadi::OPTI_UNKNOWN, casadi::MetaCon::original, casadi::GenericMatrix< MatType >::size(), casadi::GenericMatrix< MatType >::size1(), casadi::GenericMatrix< MatType >::size2(), casadi::MX::sparsity(), casadi::MetaCon::type, casadi::MetaCon::ub, and casadi::GenericMatrix< MatType >::zeros().

Referenced by subject_to().

◆ casadi_solver()

Function casadi::OptiNode::casadi_solver ( ) const

Definition at line 559 of file optistack_internal.cpp.

559  {
560  return solver_;
561 }

◆ class_name()

std::string casadi::OptiNode::class_name ( ) const
inlineoverridevirtual

Implements casadi::SharedObjectInternal.

Definition at line 221 of file optistack_internal.hpp.

221 { return "OptiNode"; }

◆ constraints()

std::vector<MX> casadi::OptiNode::constraints ( ) const
inline

Definition at line 212 of file optistack_internal.hpp.

212 { return g_; }

◆ copy()

Opti casadi::OptiNode::copy ( ) const

Definition at line 362 of file optistack_internal.cpp.

362  {
363  return Opti::create(new OptiNode(*this));
364 }
OptiNode(const std::string &problem_type)
Create Opti Context.
static Opti create(OptiNode *node)
Definition: optistack.cpp:86

References casadi::Opti::create(), and OptiNode().

Referenced by casadi::Opti::copy(), and solve().

◆ create()

OptiNode * casadi::OptiNode::create ( const std::string &  problem_type)
static

Definition at line 94 of file optistack_internal.cpp.

94  {
95 return new OptiNode(problem_type);
96 }

References OptiNode().

Referenced by casadi::Opti::Opti().

◆ debug_repr()

std::string casadi::GenericSharedInternal< SharedObject , SharedObjectInternal >::debug_repr ( const Internal *  i) const
inherited

Definition at line 62 of file generic_shared_internal.hpp.

162  {
163  // Note: i != this because of something something multiple inheritance
164  return str( (casadi_int)(i)) + "/" + static_cast<const Internal*>(this)->class_name();
165  }
std::string str(const T &v)
String representation, any type.

◆ describe()

std::string casadi::OptiNode::describe ( const MX x,
casadi_int  indent = 0,
const Dict opts = Dict() 
) const

Definition at line 139 of file optistack_internal.cpp.

139  {
140  if (problem_dirty()) return baked_copy().describe(expr, indent, opts);
141  casadi_int max_stacktrace_depth = 1;
142  for (const auto& op : opts) {
143  if (op.first=="max_stacktrace_depth") {
144  max_stacktrace_depth = op.second.as_int();
145  } else {
146  casadi_warning("Unknown option '" + op.first + "'");
147  }
148  }
149  std::string s_indent;
150  for (casadi_int i=0;i<indent;++i) {
151  s_indent+= " ";
152  }
153  std::string description = s_indent;
154  if (expr.is_symbolic()) {
155  if (has(expr)) {
156  description += "Opti " + variable_type_to_string(meta(expr).type) + " '" + expr.name() +
157  "' of shape " + expr.dim();
158  const Dict& extra = meta(expr).extra;
159  auto it = extra.find("stacktrace");
160  if (it!=extra.end()) {
161  for (const Dict& stacktrace : it->second.as_dict_vector()) {
162  description += ", " + format_stacktrace(stacktrace, indent+1);
163  if (--max_stacktrace_depth==0) break;
164  }
165  }
166  } else {
167  VariableType vt;
168  if (parse_opti_name(expr.name(), vt)) {
169  description += "Opti " + variable_type_to_string(vt) + " '" + expr.name() +
170  "' of shape " + expr.dim()+
171  ", belonging to a different instance of Opti.";
172  } else {
173  description += "MX symbol '" + expr.name() + "' of shape " + expr.dim();
174  description += ", declared outside of Opti.";
175  }
176  }
177  } else {
178  if (has_con(expr)) {
179  description = "Opti constraint of shape " + expr.dim();
180  const Dict& extra = meta_con(expr).extra;
181  auto it = extra.find("stacktrace");
182  if (it!=extra.end()) {
183  for (const Dict& stacktrace : it->second.as_dict_vector()) {
184  description += ", " + format_stacktrace(stacktrace, indent+1);
185  if (--max_stacktrace_depth==0) break;
186  }
187  }
188  } else {
189  std::vector<MX> s = symvar(expr);
190  if (s.empty()) {
191  description+= "Constant epxression.";
192  } else {
193  description+= "General expression, dependent on " + str(s.size()) + " symbols:";
194  for (casadi_int i=0;i<s.size();++i) {
195  description+= "\n"+describe(s[i], indent+1);
196  if (i>5) {
197  description+= "\n...";
198  break;
199  }
200  }
201  }
202  }
203  }
204 
205  return description;
206 }
std::string describe(const MX &x, casadi_index indent=0, const Dict &opts=Dict()) const
Definition: optistack.cpp:659
OptiAdvanced baked_copy() const
std::string description(Category v)
GenericType::Dict Dict
C++ equivalent of Python's dict or MATLAB's struct.

References baked_copy(), casadi::OptiAdvanced::describe(), casadi::description(), casadi::GenericMatrix< MatType >::dim(), casadi::MetaCon::extra, casadi::MetaVar::extra, casadi::MX::is_symbolic(), casadi::MX::name(), problem_dirty(), casadi::str(), and symvar().

Referenced by assert_active_symbol(), g_describe(), solve_prepare(), value(), and x_describe().

◆ destroySingleton()

void casadi::GenericSharedInternal< SharedObject , SharedObjectInternal >::destroySingleton ( )
inlineprotectedinherited

Called in the destructor of singletons

Definition at line 77 of file generic_shared_internal.hpp.

77  {
78  static_cast<Internal*>(this)->count--;
79  }

◆ disp()

void casadi::OptiNode::disp ( std::ostream &  stream,
bool  more = false 
) const
overridevirtual

Implements casadi::SharedObjectInternal.

Definition at line 1705 of file optistack_internal.cpp.

1705  {
1706 
1707 }

◆ dual()

MX casadi::OptiNode::dual ( const MX m) const

Definition at line 601 of file optistack_internal.cpp.

601  {
602  return meta_con(m).dual;
603 }

References casadi::MetaCon::dual.

◆ f()

MX casadi::OptiNode::f ( ) const
inline

Definition at line 260 of file optistack_internal.hpp.

260  {
261  if (problem_dirty()) return baked_copy().f();
262  return nlp_unscaled_.at("f");
263  }
MX f() const
Get objective expression.
Definition: optistack.cpp:358

Referenced by minimize().

◆ f_linear_scale()

double casadi::OptiNode::f_linear_scale ( ) const
inline

Definition at line 293 of file optistack_internal.hpp.

293  {
294  if (problem_dirty()) return baked_copy().f_linear_scale();
295  return f_linear_scale_;
296  }
double f_linear_scale() const
Definition: optistack.cpp:415

Referenced by scale_helper().

◆ g()

MX casadi::OptiNode::g ( ) const
inline

Definition at line 254 of file optistack_internal.hpp.

254  {
255  if (problem_dirty()) return baked_copy().g();
256  return nlp_unscaled_.at("g");
257  }
MX g() const
Get all (scalarised) constraint expressions as a column vector.
Definition: optistack.cpp:350

Referenced by bake(), show_infeasibilities(), solve_prepare(), solver_construct(), and subject_to().

◆ g_describe()

std::string casadi::OptiNode::g_describe ( casadi_int  i,
const Dict opts = Dict() 
) const

Definition at line 208 of file optistack_internal.cpp.

208  {
209  if (problem_dirty()) return baked_copy().g_describe(i, opts);
210  MX expr = g_lookup(i);
211  casadi_int local_i = i-meta_con(expr).start + GlobalOptions::start_index;
212  std::string description = describe(expr, 0, opts);
213  if (expr.numel()>1)
214  description += "\nAt nonzero " + str(local_i % expr.numel()) +
215  ", part " + str((casadi_int) local_i / expr.numel()) + ".";
216  return description;
217 }
static casadi_int start_index
std::string g_describe(casadi_index i, const Dict &opts=Dict()) const
Definition: optistack.cpp:652
MX g_lookup(casadi_int i) const

References baked_copy(), describe(), casadi::description(), casadi::OptiAdvanced::g_describe(), g_lookup(), casadi::GenericMatrix< MatType >::numel(), problem_dirty(), casadi::IndexAbstraction::start, casadi::GlobalOptions::start_index, and casadi::str().

Referenced by show_infeasibilities().

◆ g_index_reduce_g()

casadi_int casadi::OptiNode::g_index_reduce_g ( casadi_int  i) const

Definition at line 514 of file optistack_internal.cpp.

514  {
515  stats();
516  return g_index_reduce_g_[i];
517 }
Dict stats() const
Get statistics.

References stats().

◆ g_index_reduce_x()

casadi_int casadi::OptiNode::g_index_reduce_x ( casadi_int  i) const

Definition at line 522 of file optistack_internal.cpp.

522  {
523  stats();
524  return g_index_reduce_x_[i];
525 }

References stats().

◆ g_index_unreduce_g()

casadi_int casadi::OptiNode::g_index_unreduce_g ( casadi_int  i) const

Definition at line 518 of file optistack_internal.cpp.

518  {
519  stats();
520  return g_index_unreduce_g_[i];
521 }

References stats().

◆ g_linear_scale()

DM casadi::OptiNode::g_linear_scale ( ) const
inline

Definition at line 289 of file optistack_internal.hpp.

289  {
290  if (problem_dirty()) return baked_copy().g_linear_scale();
291  return DM(g_linear_scale_);
292  }
DM g_linear_scale() const
Definition: optistack.cpp:407
Matrix< double > DM
Definition: dm_fwd.hpp:33

Referenced by bake(), and scale_helper().

◆ g_lookup()

MX casadi::OptiNode::g_lookup ( casadi_int  i) const

Definition at line 242 of file optistack_internal.cpp.

242  {
243  if (problem_dirty()) return baked_copy().g_lookup(i);
244  casadi_assert_dev(i>=0);
245  casadi_assert_dev(i<ng());
246  for (const auto& e : g_) {
247  const MetaCon& m = meta_con(e);
248  if (i>=m.start && i<m.stop) return e;
249  }
250  casadi_error("Internal error");
251  return MX();
252 }
MX g_lookup(casadi_index i) const
Definition: optistack.cpp:637
casadi_int ng() const
Number of (scalarised) constraints.

References baked_copy(), casadi::OptiAdvanced::g_lookup(), ng(), problem_dirty(), casadi::IndexAbstraction::start, and casadi::IndexAbstraction::stop.

Referenced by g_describe().

◆ get_meta()

MetaVar casadi::OptiNode::get_meta ( const MX m) const

Definition at line 629 of file optistack_internal.cpp.

629  {
630  return meta(m);
631 }

Referenced by update_user_dict(), and user_dict().

◆ get_meta_con()

MetaCon casadi::OptiNode::get_meta_con ( const MX m) const

Definition at line 633 of file optistack_internal.cpp.

633  {
634  return meta_con(m);
635 }

Referenced by update_user_dict(), and user_dict().

◆ getCount()

Definition at line 60 of file generic_shared_internal.hpp.

186  {
187  return static_cast<const Internal*>(this)->count;
188  }

◆ has_callback_class()

bool casadi::OptiNode::has_callback_class ( ) const

Definition at line 107 of file optistack_internal.cpp.

107  {
108  return user_callback_ != 0;
109 }

◆ initial()

std::vector< MX > casadi::OptiNode::initial ( ) const

Definition at line 697 of file optistack_internal.cpp.

697  {
698  std::vector<MX> ret;
699  for (const auto& e : symvar()) {
700  if (meta(e).type==OPTI_VAR || meta(e).type==OPTI_DUAL_G)
701  ret.push_back(e==store_initial_.at(meta(e).type)[meta(e).i]);
702  }
703  return ret;
704 }

References casadi::OPTI_DUAL_G, casadi::OPTI_VAR, and symvar().

◆ initSingleton()

void casadi::GenericSharedInternal< SharedObject , SharedObjectInternal >::initSingleton ( )
inlineprotectedinherited

Called in the constructor of singletons to avoid that the counter reaches zero

Definition at line 71 of file generic_shared_internal.hpp.

71  {
72  casadi_assert_dev(static_cast<Internal*>(this)->count==0);
73  static_cast<Internal*>(this)->count++;
74  }

◆ instance_number()

casadi_int casadi::OptiNode::instance_number ( ) const

Definition at line 1709 of file optistack_internal.cpp.

1709  {
1710  return instance_number_;
1711 }

◆ is_parametric()

bool casadi::OptiNode::is_parametric ( const MX expr) const

Definition at line 1027 of file optistack_internal.cpp.

1027  {
1028  return symvar(expr, OPTI_VAR).empty();
1029 }

References casadi::OPTI_VAR, and symvar().

Referenced by canon_expr().

◆ lam_g()

MX casadi::OptiNode::lam_g ( ) const
inline

Definition at line 276 of file optistack_internal.hpp.

276  {
277  if (problem_dirty()) return baked_copy().lam_g();
278  return lam_;
279  }
MX lam_g() const
Get all (scalarised) dual variables as a symbolic column vector.
Definition: optistack.cpp:383

Referenced by to_function().

◆ lbg()

MX casadi::OptiNode::lbg ( ) const
inline

Definition at line 265 of file optistack_internal.hpp.

265  {
266  if (problem_dirty()) return baked_copy().lbg();
267  return bounds_unscaled_lbg_;
268  }
MX lbg() const
Get all (scalarised) bounds on constraints as a column vector.
Definition: optistack.cpp:366

Referenced by show_infeasibilities().

◆ mark_problem_dirty()

void casadi::OptiNode::mark_problem_dirty ( bool  flag = true)
inline

Definition at line 321 of file optistack_internal.hpp.

void mark_solver_dirty(bool flag=true)

Referenced by bake(), minimize(), OptiNode(), set_domain(), and subject_to().

◆ mark_solved()

void casadi::OptiNode::mark_solved ( bool  flag = true)
inline

Definition at line 329 of file optistack_internal.hpp.

329 { solved_ = flag;}

Referenced by res(), and set_domain().

◆ mark_solver_dirty()

void casadi::OptiNode::mark_solver_dirty ( bool  flag = true)
inline

Definition at line 325 of file optistack_internal.hpp.

325 { solver_dirty_=flag; mark_solved(false); }
void mark_solved(bool flag=true)

Referenced by solve(), and solver().

◆ minimize()

void casadi::OptiNode::minimize ( const MX f,
double  linear_scale = 1 
)

Definition at line 1182 of file optistack_internal.cpp.

1182  {
1183  assert_only_opti_nondual(f);
1185  casadi_assert(f.is_scalar(), "Objective must be scalar, got " + f.dim() + ".");
1186  f_ = f;
1187  f_linear_scale_ = linear_scale;
1188 }
std::string dim(bool with_nz=false) const
Get string representation of dimensions.
bool is_scalar(bool scalar_and_dense=false) const
Check if the matrix expression is scalar.
MX f() const
Get objective expression.

References casadi::GenericMatrix< MatType >::dim(), f(), casadi::GenericMatrix< MatType >::is_scalar(), and mark_problem_dirty().

◆ ng()

casadi_int casadi::OptiNode::ng ( ) const
inline

Definition at line 236 of file optistack_internal.hpp.

236  {
237  if (problem_dirty()) return baked_copy().ng();
238  return nlp_.at("g").size1();
239  }
casadi_int ng() const
Number of (scalarised) constraints.
Definition: optistack.cpp:326

Referenced by g_lookup(), scale_helper(), and stats().

◆ np()

casadi_int casadi::OptiNode::np ( ) const
inline

Definition at line 230 of file optistack_internal.hpp.

230  {
231  if (problem_dirty()) return baked_copy().np();
232  return nlp_.at("p").size1();
233  }
casadi_int np() const
Number of (scalarised) parameters.
Definition: optistack.cpp:318

Referenced by scale_helper().

◆ nx()

casadi_int casadi::OptiNode::nx ( ) const
inline

Definition at line 224 of file optistack_internal.hpp.

224  {
225  if (problem_dirty()) return baked_copy().nx();
226  return nlp_.at("x").size1();
227  }
casadi_int nx() const
Number of (scalarised) decision variables.
Definition: optistack.cpp:310

Referenced by scale_helper(), and x_lookup().

◆ objective()

MX casadi::OptiNode::objective ( ) const
inline

Definition at line 213 of file optistack_internal.hpp.

213 { return f_; }

◆ p()

MX casadi::OptiNode::p ( ) const
inline

Definition at line 248 of file optistack_internal.hpp.

248  {
249  if (problem_dirty()) return baked_copy().p();
250  return nlp_.at("p");
251  }
MX p() const
Get all (scalarised) parameters as a symbolic column vector.
Definition: optistack.cpp:342

Referenced by bake(), to_function(), and value().

◆ parameter() [1/3]

MX casadi::OptiNode::parameter ( casadi_int  n = 1,
casadi_int  m = 1,
const std::string &  attribute = "full" 
)

Definition at line 458 of file optistack_internal.cpp.

458  {
459  casadi_assert_dev(attribute=="full");
460 
461  // Prepare metadata
462  MetaVar meta_data;
463  meta_data.attribute = attribute;
464  meta_data.n = n;
465  meta_data.m = m;
466  meta_data.type = OPTI_PAR;
467  meta_data.count = count_++;
468  meta_data.i = count_par_++;
469 
470  MX symbol = MX::sym(name_prefix() + "p_" + str(count_par_), n, m);
471  symbols_.push_back(symbol);
472  store_initial_[OPTI_PAR].push_back(DM::nan(symbol.sparsity()));
473 
474  set_meta(symbol, meta_data);
475  return symbol;
476 }
static MX sym(const std::string &name, casadi_int nrow=1, casadi_int ncol=1)
Create an nrow-by-ncol symbolic primitive.
static Matrix< double > nan(const Sparsity &sp)
create a matrix with all nan
void set_meta(const MX &m, const MetaVar &meta)
Set meta-data of an expression.

References casadi::MetaVar::attribute, casadi::MetaVar::count, casadi::MetaVar::i, casadi::MetaVar::m, casadi::MetaVar::n, casadi::Matrix< double >::nan(), casadi::OPTI_PAR, set_meta(), casadi::MX::sparsity(), casadi::str(), casadi::GenericMatrix< MX >::sym(), and casadi::MetaVar::type.

◆ parameter() [2/3]

MX casadi::OptiNode::parameter ( const MX symbol,
const std::string &  attribute = "full" 
)

Definition at line 419 of file optistack_internal.cpp.

419  {
420  casadi_assert_dev(attribute=="full");
421 
422  // Prepare metadata
423  MetaVar meta_data;
424  meta_data.attribute = attribute;
425  meta_data.n = symbol.size1();
426  meta_data.m = symbol.size2();
427  meta_data.type = OPTI_PAR;
428  meta_data.count = count_++;
429  meta_data.i = count_par_++;
430 
431  symbols_.push_back(symbol);
432  store_initial_[OPTI_PAR].push_back(DM::nan(symbol.sparsity()));
433 
434  set_meta(symbol, meta_data);
435  return symbol;
436 }

References casadi::MetaVar::attribute, casadi::MetaVar::count, casadi::MetaVar::i, casadi::MetaVar::m, casadi::MetaVar::n, casadi::Matrix< double >::nan(), casadi::OPTI_PAR, set_meta(), casadi::GenericMatrix< MatType >::size1(), casadi::GenericMatrix< MatType >::size2(), casadi::MX::sparsity(), and casadi::MetaVar::type.

◆ parameter() [3/3]

MX casadi::OptiNode::parameter ( const Sparsity sp,
const std::string &  attribute = "full" 
)

Definition at line 438 of file optistack_internal.cpp.

438  {
439  casadi_assert_dev(attribute=="full");
440 
441  // Prepare metadata
442  MetaVar meta_data;
443  meta_data.attribute = attribute;
444  meta_data.n = sp.size1();
445  meta_data.m = sp.size2();
446  meta_data.type = OPTI_PAR;
447  meta_data.count = count_++;
448  meta_data.i = count_par_++;
449 
450  MX symbol = MX::sym(name_prefix() + "p_" + str(count_par_), sp);
451  symbols_.push_back(symbol);
452  store_initial_[OPTI_PAR].push_back(DM::nan(symbol.sparsity()));
453 
454  set_meta(symbol, meta_data);
455  return symbol;
456 }

References casadi::MetaVar::attribute, casadi::MetaVar::count, casadi::MetaVar::i, casadi::MetaVar::m, casadi::MetaVar::n, casadi::Matrix< double >::nan(), casadi::OPTI_PAR, set_meta(), casadi::Sparsity::size1(), casadi::Sparsity::size2(), casadi::MX::sparsity(), casadi::str(), casadi::GenericMatrix< MX >::sym(), and casadi::MetaVar::type.

◆ problem_dirty()

bool casadi::OptiNode::problem_dirty ( ) const
inline

◆ res() [1/2]

DMDict casadi::OptiNode::res ( ) const
inline

Definition at line 211 of file optistack_internal.hpp.

211 { return res_; }

Referenced by res(), scale_helper(), solve(), solve_prepare(), and to_function().

◆ res() [2/2]

void casadi::OptiNode::res ( const DMDict res)

Definition at line 1237 of file optistack_internal.cpp.

1237  {
1238  const std::vector<double> & x_v = res.at("x").nonzeros();
1239  for (const auto &v : active_symvar(OPTI_VAR)) {
1240  casadi_int i = meta(v).i;
1241  std::vector<double> & data_v = store_latest_[OPTI_VAR][i].nonzeros();
1242  for (casadi_int i=0;i<data_v.size();++i) {
1243  casadi_int j = meta(v).start+i;
1244  data_v[i] = x_v[j]*linear_scale_[j] + linear_scale_offset_[j];
1245  }
1246  }
1247  if (res.find("lam_g")!=res.end()) {
1248  const std::vector<double> & lam_v = res.at("lam_g").nonzeros();
1249  for (const auto &v : active_symvar(OPTI_DUAL_G)) {
1250  casadi_int i = meta(v).i;
1251  std::vector<double> & data_v = store_latest_[OPTI_DUAL_G][i].nonzeros();
1252  for (casadi_int i=0;i<data_v.size();++i) {
1253  casadi_int j = meta(v).start+i;
1254  j = index_all_to_g_.at(j);
1255  if (j<0) continue;
1256  data_v[i] = lam_v.at(j)/g_linear_scale_.at(j)*f_linear_scale_;
1257  }
1258  }
1259  }
1260  res_ = res;
1261  mark_solved();
1262 }
casadi_int i
Definition: optistack.hpp:532

References active_symvar(), casadi::MetaVar::i, mark_solved(), casadi::OPTI_DUAL_G, casadi::OPTI_VAR, res(), and casadi::IndexAbstraction::start.

◆ return_status()

std::string casadi::OptiNode::return_status ( ) const

Definition at line 527 of file optistack_internal.cpp.

527  {
528  Dict mystats;
529  try {
530  mystats = stats();
531  } catch (...) {
532  //
533  }
534  if (mystats.find("return_status")!=mystats.end()) {
535  std::stringstream ss;
536  ss << mystats.at("return_status");
537  return ss.str();
538  }
539  return "unknown";
540 }

References stats().

Referenced by solve().

◆ return_success()

bool casadi::OptiNode::return_success ( bool  accept_limit) const

Definition at line 542 of file optistack_internal.cpp.

542  {
543  Dict mystats;
544  try {
545  mystats = stats();
546  } catch (...) {
547  //
548  }
549  bool success = false;
550  if (mystats.find("success")!=mystats.end()) success = mystats.at("success");
551  if (!accept_limit) return success;
552 
553  bool limited = false;
554  if (mystats.find("unified_return_status")!=mystats.end())
555  limited = mystats.at("unified_return_status")=="SOLVER_RET_LIMITED";
556  return success || limited;
557 }

References stats().

Referenced by solve().

◆ scale_helper()

Function casadi::OptiNode::scale_helper ( const Function h) const

Extra doc: https://github.com/casadi/casadi/wiki/L_2cd

Definition at line 895 of file optistack_internal.cpp.

895  {
896  if (problem_dirty()) return baked_copy().scale_helper(h);
897  std::string name = h.name();
898  MX g_linear_scale_mx = g_linear_scale();
899  MX g_linear_scale_inv = 1/g_linear_scale();
900  MX f_linear_scale_mx = f_linear_scale();
901  MX x_linear_scale_mx = x_linear_scale();
902  MX x_linear_scale_offset_mx = x_linear_scale_offset();
903  if (name=="nlp_jac_g") {
904  MXDict arg;
905  arg["x"] = MX::sym("x", nx());
906  arg["p"] = MX::sym("p", np());
907  MXDict args;
908  args["x"] = arg["x"]*x_linear_scale_mx+x_linear_scale_offset_mx;
909  args["p"] = arg["p"];
910  MXDict res = h(args);
911  for (const auto & it : res) {
912  if (it.first=="g") {
913  arg[it.first] = it.second*g_linear_scale_inv;
914  } else if (it.first=="jac_g_x") {
915  arg[it.first] = mtimes(
916  mtimes(diag(g_linear_scale_inv), it.second),
917  diag(x_linear_scale_mx));
918  } else {
919  casadi_error("Unknown output '" + it.first + "'. Expecting g, jac_g_x.");
920  }
921  }
922  Function ret(name, arg, h.name_in(), h.name_out());
923  return ret;
924  } else if (name=="nlp_hess_l") {
925  MXDict arg;
926  arg["x"] = MX::sym("x", nx());
927  arg["p"] = MX::sym("p", np());
928  arg["lam_f"] = MX::sym("lam_f");
929  arg["lam_g"] = MX::sym("lam_g", ng());
930  MXDict args;
931  args["x"] = arg["x"]*x_linear_scale_mx+x_linear_scale_offset_mx;
932  args["p"] = arg["p"];
933  args["lam_f"] = arg["lam_f"]/f_linear_scale_mx;
934  args["lam_g"] = arg["lam_g"]/g_linear_scale_mx;
935  MXDict res = h(args);
936  for (const auto & it : res) {
937  if (it.first=="triu_hess_gamma_x_x" ||
938  it.first=="hess_gamma_x_x" ||
939  (it.second.size1()==nx() && it.second.is_square())) {
940  MX D = diag(x_linear_scale_mx);
941  arg[it.first] = mtimes(mtimes(D, it.second), D);
942  } else {
943  casadi_error("Unknown output '" + it.first + "'. Expecting triu_hess_gamma_x_x");
944  }
945  }
946  Function ret(name, arg, h.name_in(), h.name_out());
947  return ret;
948  } else {
949  casadi_error("Unknown helper function '" + name + "'");
950  }
951 }
const std::string & name() const
Name of the function.
Definition: function.cpp:1307
casadi_int nx() const
Number of (scalarised) decision variables.
casadi_int np() const
Number of (scalarised) parameters.
DM x_linear_scale_offset() const
double f_linear_scale() const
Function scale_helper(const Function &h) const
Scale a helper function constructed via opti.x, opti.g, ...
Definition: optistack.cpp:254

References arg(), baked_copy(), casadi::D, f_linear_scale(), g_linear_scale(), casadi::Function::name(), casadi::Function::name_in(), casadi::Function::name_out(), ng(), np(), nx(), problem_dirty(), res(), casadi::Opti::scale_helper(), casadi::GenericMatrix< MX >::sym(), x_linear_scale(), and x_linear_scale_offset().

◆ set_domain()

void casadi::OptiNode::set_domain ( const MX x,
const std::string &  domain 
)

Definition at line 1481 of file optistack_internal.cpp.

1481  {
1482  mark_solved(false);
1484  casadi_assert(x.is_valid_input(), "First argument to set_domain should be a variable.");
1485  DomainType type;
1486  if (domain=="real") {
1487  type = OPTI_DOMAIN_REAL;
1488  } else if (domain=="integer") {
1489  type = OPTI_DOMAIN_INTEGER;
1490  } else {
1491  casadi_error("Unknown domain '" + domain + "'. Known values are 'real', 'integer'.");
1492  }
1493  for (const auto& prim : x.primitives()) {
1494  MetaVar& m = meta(prim);
1495  m.domain = type;
1496  }
1497 }
bool is_valid_input() const
Check if matrix can be used to define function inputs.
Definition: mx.cpp:925
std::vector< MX > primitives() const
Get primitives.
Definition: mx.cpp:933
@ OPTI_DOMAIN_REAL
Definition: optistack.hpp:501

References casadi::MetaVar::domain, casadi::MX::is_valid_input(), mark_problem_dirty(), mark_solved(), casadi::OPTI_DOMAIN_INTEGER, casadi::OPTI_DOMAIN_REAL, casadi::MX::primitives(), and x().

◆ set_initial() [1/2]

void casadi::OptiNode::set_initial ( const MX x,
const DM v 
)

Set initial value for decision variables

Definition at line 1596 of file optistack_internal.cpp.

1596  {
1597  for (const auto & s : MX::symvar(x))
1598  casadi_assert(meta(s).type!=OPTI_PAR,
1599  "You cannot set an initial value for a parameter. Did you mean 'set_value'?");
1600  set_value_internal(x, v, store_initial_);
1601 }
static std::vector< MX > symvar(const MX &x)
Definition: mx.cpp:1938

References casadi::OPTI_PAR, casadi::MX::symvar(), and x().

Referenced by set_initial().

◆ set_initial() [2/2]

void casadi::OptiNode::set_initial ( const std::vector< MX > &  assignments)

Set initial value for decision variables

Definition at line 1472 of file optistack_internal.cpp.

1472  {
1473  for (const auto& v : assignments) {
1474  casadi_assert_dev(v.is_op(OP_EQ));
1475  casadi_assert_dev(v.dep(0).is_constant());
1476  if (has(v.dep(1)))
1477  set_initial(v.dep(1), static_cast<DM>(v.dep(0)));
1478  }
1479 }
void set_initial(const MX &x, const DM &v)

References casadi::OP_EQ, and set_initial().

◆ set_linear_scale()

void casadi::OptiNode::set_linear_scale ( const MX x,
const DM scale,
const DM offset 
)

Definition at line 1610 of file optistack_internal.cpp.

1610  {
1611  for (const auto & s : MX::symvar(x))
1612  casadi_assert(meta(s).type!=OPTI_PAR,
1613  "You cannot set a scale value for a parameter.");
1614  casadi_assert(scale.is_scalar() || scale.size()==x.size(),
1615  "Dimension mismatch in linear_scale. Expected " + x.dim() + ", got " + scale.dim()+ ".");
1616  set_value_internal(x, scale, store_linear_scale_);
1617  casadi_assert(offset.is_scalar() || offset.size()==x.size(),
1618  "Dimension mismatch in linear_scale offset. Expected " + x.dim() +
1619  ", got " + scale.dim()+ ".");
1620  set_value_internal(x, offset, store_linear_scale_offset_);
1621 }

References casadi::GenericMatrix< MatType >::dim(), casadi::GenericMatrix< MatType >::is_scalar(), casadi::OPTI_PAR, casadi::GenericMatrix< MatType >::size(), casadi::MX::symvar(), and x().

◆ set_meta()

void casadi::OptiNode::set_meta ( const MX m,
const MetaVar meta 
)

Definition at line 563 of file optistack_internal.cpp.

563  {
564  meta_[m.get()] = meta;
565 }

References casadi::MX::get().

Referenced by parameter(), update_user_dict(), and variable().

◆ set_meta_con()

void casadi::OptiNode::set_meta_con ( const MX m,
const MetaCon meta 
)

Definition at line 567 of file optistack_internal.cpp.

567  {
568  meta_con_[m.get()] = meta;
569 }

References casadi::MX::get().

Referenced by subject_to(), and update_user_dict().

◆ set_value() [1/2]

void casadi::OptiNode::set_value ( const MX x,
const DM v 
)

Each parameter must be given a value before 'solve' can be called

Extra doc: https://github.com/casadi/casadi/wiki/L_173

Definition at line 1603 of file optistack_internal.cpp.

1603  {
1604  for (const auto & s : MX::symvar(x))
1605  casadi_assert(meta(s).type!=OPTI_VAR,
1606  "You cannot set a value for a variable. Did you mean 'set_initial'?");
1607  set_value_internal(x, v, store_initial_);
1608 }

References casadi::OPTI_VAR, casadi::MX::symvar(), and x().

Referenced by set_value().

◆ set_value() [2/2]

void casadi::OptiNode::set_value ( const std::vector< MX > &  assignments)

Each parameter must be given a value before 'solve' can be called

Extra doc: https://github.com/casadi/casadi/wiki/L_173

Definition at line 1499 of file optistack_internal.cpp.

1499  {
1500  for (const auto& v : assignments) {
1501  casadi_assert_dev(v.is_op(OP_EQ));
1502  casadi_assert_dev(v.dep(0).is_constant());
1503  if (has(v.dep(1)))
1504  set_value(v.dep(1), static_cast<DM>(v.dep(0)));
1505  }
1506 }
void set_value(const MX &x, const DM &v)
Set value of parameter.

References casadi::OP_EQ, and set_value().

◆ shared_from_this() [1/2]

B casadi::GenericSharedInternal< SharedObject , SharedObjectInternal >::shared_from_this ( )
inlineprotectedinherited

Definition at line 83 of file generic_shared_internal.hpp.

83  {
84  casadi_assert_dev(B::test_cast(static_cast<Internal*>(this)));
85  B ret;
86  ret.own(static_cast<Internal*>(this));
87  return ret;
88  }

◆ shared_from_this() [2/2]

const B casadi::GenericSharedInternal< SharedObject , SharedObjectInternal >::shared_from_this ( ) const
inlineprotectedinherited

Definition at line 92 of file generic_shared_internal.hpp.

92  {
93  casadi_assert_dev(B::test_cast(static_cast<const Internal*>(this)));
94  B ret;
95  ret.own(const_cast<Internal*>(static_cast<const Internal*>(this)));
96  return ret;
97  }

◆ show_infeasibilities()

void casadi::OptiNode::show_infeasibilities ( double  tol = 0,
const Dict opts = Dict() 
) const

Definition at line 1713 of file optistack_internal.cpp.

1713  {
1714  stats();
1715  std::vector<double> lbg_ = value(lbg()).get_elements();
1716  std::vector<double> ubg_ = value(ubg()).get_elements();
1717  std::vector<double> g_scaled_ = value(nlp_.at("g"), std::vector<MX>(), true).get_elements();
1718  std::vector<double> lbg_scaled_ = value(bounds_lbg_, std::vector<MX>(), true).get_elements();
1719  std::vector<double> ubg_scaled_ = value(bounds_ubg_, std::vector<MX>(), true).get_elements();
1720 
1721 
1722  std::vector<double> g_ = value(g()).get_elements();
1723  uout() << "Violated constraints (tol " << tol << "), in order of declaration:" << std::endl;
1724 
1725  for (casadi_int i=0;i<g_.size();++i) {
1726  double err = std::max(g_[i]-ubg_[i], lbg_[i]-g_[i]);
1727  double err_scaled = std::max(g_scaled_[i]-ubg_scaled_[i], lbg_scaled_[i]-g_scaled_[i]);
1728  if (err>=tol) {
1729  uout() << "------- i = " << i+GlobalOptions::start_index;
1730  uout() << "/" << g_.size();
1731 
1732  if (reduced_) {
1733  if (is_simple_[i]) {
1734  if (GlobalOptions::start_index==0) {
1735  uout() << " reduced to bound on x[" << g_index_reduce_x_.at(i) << "]";
1736  } else {
1737  uout() << " reduced to bound on x(" << g_index_reduce_x_.at(i)+1 << ")";
1738  }
1739  } else {
1740  uout() << " reduced to g[" << g_index_reduce_g_.at(i) << "]";
1741  }
1742  }
1743 
1744  uout() << " ------ " << std::endl;
1745  uout() << lbg_[i] << " <= " << g_[i] << " <= " << ubg_[i];
1746  uout() << " (viol " << err << ")" << std::endl;
1747  if (g_[i]!=g_scaled_[i]) {
1748  uout() << lbg_scaled_[i] << " <= " << g_scaled_[i] << " <= " << ubg_scaled_[i];
1749  uout() << " (scaled) (viol " << err_scaled << ")" << std::endl;
1750  }
1751  uout() << g_describe(i, opts) << std::endl;
1752  }
1753  }
1754 }
std::vector< Scalar > get_elements() const
Get all elements.
DM value(const MX &x, const std::vector< MX > &values=std::vector< MX >(), bool scaled=false) const
std::string g_describe(casadi_int i, const Dict &opts=Dict()) const
std::ostream & uout()

References g(), g_describe(), casadi::Matrix< Scalar >::get_elements(), lbg(), casadi::GlobalOptions::start_index, stats(), ubg(), casadi::uout(), and value().

◆ solve()

OptiSol casadi::OptiNode::solve ( bool  accept_limit)

Definition at line 1316 of file optistack_internal.cpp.

1316  {
1317 
1318  if (problem_dirty()) {
1319  bake();
1320  }
1321 
1322  bool solver_update = solver_dirty() || old_callback() || (user_callback_ && callback_.is_null());
1323 
1324  if (solver_update) {
1325  solver_ = solver_construct(true);
1326  mark_solver_dirty(false);
1327  }
1328 
1329  solve_prepare();
1330  res(solve_actual(arg_));
1331 
1332  std::string ret = return_status();
1333 
1334  casadi_assert(return_success(accept_limit),
1335  "Solver failed. You may use opti.debug.value to investigate the latest values of variables."
1336  " return_status is '" + ret + "'");
1337 
1338  return copy();
1339 }
bool is_null() const
Is a null pointer?
Function solver_construct(bool callback=true)
void bake()
Fix the structure of the optimization problem.
bool return_success(bool accept_limit) const
Did the solver return successfully?
std::string return_status() const
Get return status of solver.
DMDict solve_actual(const DMDict &args)

References bake(), copy(), casadi::GenericShared< Shared, Internal >::is_null(), mark_solver_dirty(), problem_dirty(), res(), return_status(), return_success(), solve_actual(), solve_prepare(), solver_construct(), and solver_dirty().

◆ solve_actual()

DMDict casadi::OptiNode::solve_actual ( const DMDict args)

Definition at line 1381 of file optistack_internal.cpp.

1381  {
1382  return solver_(arg);
1383 }

References arg().

Referenced by solve().

◆ solve_prepare()

void casadi::OptiNode::solve_prepare ( )

Definition at line 1342 of file optistack_internal.cpp.

1342  {
1343 
1344 
1345  // Verify the constraint types
1346  for (const auto& g : g_) {
1347  if (meta_con(g).type==OPTI_UNKNOWN)
1348  casadi_error("Constraint type unknown. Use ==, >= or <= .");
1349  }
1350 
1351  if (user_callback_) {
1352  InternalOptiCallback* cb = static_cast<InternalOptiCallback*>(callback_.get());
1353  cb->reset();
1354  }
1355 
1356  // Get initial guess and parameter values
1357  arg_["x0"] = (veccat(active_values(OPTI_VAR))-linear_scale_offset_)/linear_scale_;
1358  arg_["p"] = veccat(active_values(OPTI_PAR));
1359  arg_["lam_g0"] = veccat(active_values(OPTI_DUAL_G));
1360  if (!arg_["p"].is_regular()) {
1361  std::vector<MX> s = active_symvar(OPTI_PAR);
1362  std::vector<DM> v = active_values(OPTI_PAR);
1363  for (casadi_int i=0;i<s.size();++i) {
1364  casadi_assert(v[i].is_regular(),
1365  "You have forgotten to assign a value to a parameter ('set_value'), "
1366  "or have set it to NaN/Inf:\n" + describe(s[i], 1));
1367  }
1368  }
1369 
1370 
1371  // Evaluate bounds for given parameter values
1372  DMDict arg;
1373  arg["p"] = arg_["p"];
1374  DMDict res = bounds_(arg);
1375  arg_["lbg"] = res["lbg"];
1376  arg_["ubg"] = res["ubg"];
1377 
1378  stats_.clear();
1379 }
FunctionInternal * get() const
Definition: function.cpp:353
friend class InternalOptiCallback
bool is_regular(const std::vector< T > &v)
Checks if array does not contain NaN or Inf.
std::map< std::string, DM > DMDict
Definition: dm_fwd.hpp:36

References active_symvar(), active_values(), arg(), describe(), g(), casadi::Function::get(), InternalOptiCallback, casadi::is_regular(), casadi::OPTI_DUAL_G, casadi::OPTI_PAR, casadi::OPTI_UNKNOWN, casadi::OPTI_VAR, and res().

Referenced by solve().

◆ solved()

bool casadi::OptiNode::solved ( ) const
inline

Definition at line 330 of file optistack_internal.hpp.

330 { return solved_; }

Referenced by assert_solved().

◆ solver()

void casadi::OptiNode::solver ( const std::string &  solver,
const Dict plugin_options = Dict(),
const Dict solver_options = Dict() 
)

Definition at line 953 of file optistack_internal.cpp.

954  {
955  solver_name_ = solver_name;
956  solver_options_ = plugin_options;
957  if (!solver_options.empty())
958  solver_options_[solver_name] = solver_options;
960 }

References mark_solver_dirty().

Referenced by to_function().

◆ solver_construct()

Function casadi::OptiNode::solver_construct ( bool  callback = true)

Definition at line 1270 of file optistack_internal.cpp.

1270  {
1271  if (problem_dirty()) {
1272  bake();
1273  }
1274 
1275  // Verify the constraint types
1276  for (const auto& g : g_) {
1277  if (problem_type_!="conic") {
1278  if (meta_con(g).type==OPTI_PSD)
1279  casadi_error("Psd constraints not implemented yet. "
1280  "Perhaps you intended an element-wise inequality? "
1281  "In that case, make sure that the matrix is flattened (e.g. mat(:)).");
1282  }
1283  }
1284 
1285  Dict solver_options_all = solver_options_;
1286 
1287  if (solver_options_all.find("equality")==solver_options_all.end()) {
1288  solver_options_all["equality"] = equality_;
1289  }
1290 
1291  if (solver_options_all.find("discrete")==solver_options_all.end()) {
1292  solver_options_all["discrete"] = discrete_;
1293  }
1294 
1295  Dict opts = solver_options_all;
1296 
1297  // Handle callbacks
1298  if (callback && user_callback_) {
1299  callback_ = Function::create(new InternalOptiCallback(*this), Dict());
1300  opts["iteration_callback"] = callback_;
1301  }
1302 
1303  casadi_assert(!solver_name_.empty(),
1304  "You must call 'solver' on the Opti stack to select a solver. "
1305  "Suggestion: opti.solver('ipopt')");
1306 
1307  if (problem_type_=="conic") {
1308  return qpsol("solver", solver_name_, nlp_, opts);
1309  } else {
1310  return nlpsol("solver", solver_name_, nlp_, opts);
1311  }
1312 
1313 }
static Function create(FunctionInternal *node)
Create from node.
Definition: function.cpp:336
Function qpsol(const std::string &name, const std::string &solver, const SXDict &qp, const Dict &opts)
Definition: conic.cpp:262
Function nlpsol(const std::string &name, const std::string &solver, const SXDict &nlp, const Dict &opts)
Definition: nlpsol.cpp:118

References bake(), casadi::Function::create(), g(), InternalOptiCallback, casadi::nlpsol(), casadi::OPTI_PSD, problem_dirty(), and casadi::qpsol().

Referenced by solve(), and to_function().

◆ solver_dirty()

bool casadi::OptiNode::solver_dirty ( ) const
inline

Definition at line 326 of file optistack_internal.hpp.

326 { return solver_dirty_; }

Referenced by solve().

◆ stats()

Dict casadi::OptiNode::stats ( ) const

Definition at line 478 of file optistack_internal.cpp.

478  {
479  assert_solved();
480  if (stats_.empty()) {
481  stats_ = solver_.stats();
482  is_simple_ = get_from_dict(stats_,
483  "detect_simple_bounds_is_simple",
484  std::vector<bool>(ng(), false));
485  target_x_ = get_from_dict(stats_,
486  "detect_simple_bounds_target_x",
487  std::vector<casadi_int>{});
488  casadi_assert_dev(is_simple_.size()==ng());
489 
490  g_index_reduce_g_.resize(ng());
491  g_index_reduce_x_.resize(ng(), -1);
492  g_index_unreduce_g_.resize(ng(), -1);
493 
494  casadi_int* target_x_ptr = target_x_.data();
495 
496  casadi_int k=0;
497  for (casadi_int i=0;i<is_simple_.size();++i) {
498  if (!is_simple_[i]) {
499  g_index_reduce_g_[i] = k;
500  g_index_unreduce_g_[k] = i;
501  k++;
502  } else {
503  g_index_reduce_g_[i] = -1;
504  g_index_reduce_x_[i] = *target_x_ptr;
505  target_x_ptr++;
506  }
507  }
508 
509  reduced_ = any(is_simple_);
510  }
511  return stats_;
512 }
Dict stats(int mem=0) const
Get all statistics obtained at the end of the last evaluate call.
Definition: function.cpp:928
T get_from_dict(const std::map< std::string, T > &d, const std::string &key, const T &default_value)
bool any(const std::vector< bool > &v)
Check if any arguments are true.
Definition: casadi_misc.cpp:84

References casadi::any(), assert_solved(), casadi::get_from_dict(), ng(), and casadi::Function::stats().

Referenced by g_index_reduce_g(), g_index_reduce_x(), g_index_unreduce_g(), return_status(), return_success(), and show_infeasibilities().

◆ subject_to() [1/2]

void casadi::OptiNode::subject_to ( )

Definition at line 1220 of file optistack_internal.cpp.

1220  {
1222  g_.clear();
1223  store_initial_[OPTI_DUAL_G].clear();
1224  store_latest_[OPTI_DUAL_G].clear();
1225  count_dual_ = 0;
1226 }

References mark_problem_dirty(), and casadi::OPTI_DUAL_G.

◆ subject_to() [2/2]

void casadi::OptiNode::subject_to ( const MX g,
const DM linear_scale = 1,
const Dict options = Dict() 
)

Definition at line 1190 of file optistack_internal.cpp.

1190  {
1191  assert_only_opti_nondual(g);
1193  g_.push_back(g);
1194 
1195  casadi_assert(!g.is_empty(), "You passed an empty expression to `subject_to`. "
1196  "Make sure the number of rows and columns is non-zero. "
1197  "Got " + g.dim(true) + ".");
1198  casadi_assert(g.nnz()>0, "You passed a fully sparse expression to `subject_to`. "
1199  "Make sure the expression has at least one nonzero. "
1200  "Got " + g.dim(true) + ".");
1201  casadi_assert(!g.is_constant(), "You passed a constant to `subject_to`. "
1202  "You need a symbol to form a constraint.");
1203 
1204  // Store the meta-data
1205  set_meta_con(g, canon_expr(g, linear_scale));
1206  register_dual(meta_con(g));
1207 
1208  for (auto && it : options) {
1209  if (it.first=="stacktrace") {
1210  meta_con(g).extra["stacktrace"] = it.second.to_dict_vector();
1211  meta(meta_con(g).dual_canon).extra["stacktrace"] = it.second.to_dict_vector();
1212  } else if (it.first=="meta") {
1213  update_user_dict(g, it.second.to_dict());
1214  } else {
1215  casadi_error("Unknown option: " + it.first);
1216  }
1217  }
1218 }
casadi_int nnz() const
Get the number of (structural) non-zero elements.
bool is_constant() const
Check if constant.
Definition: mx.cpp:770
void update_user_dict(const MX &m, const Dict &meta)
add meta-data of an expression
MetaCon canon_expr(const MX &expr, const DM &linear_scale=1) const
Interpret an expression (for internal use only)
void set_meta_con(const MX &m, const MetaCon &meta)
Set meta-data of an expression.

References canon_expr(), casadi::GenericMatrix< MatType >::dim(), casadi::MetaCon::extra, casadi::MetaVar::extra, g(), casadi::MX::is_constant(), casadi::GenericMatrix< MatType >::is_empty(), mark_problem_dirty(), casadi::GenericMatrix< MatType >::nnz(), set_meta_con(), and update_user_dict().

◆ symvar() [1/3]

std::vector< MX > casadi::OptiNode::symvar ( ) const

Get symbols present in expression

Definition at line 977 of file optistack_internal.cpp.

977  {
978  return symbols_;
979 }

Referenced by bake(), describe(), initial(), is_parametric(), symvar(), value(), value_parameters(), and value_variables().

◆ symvar() [2/3]

std::vector< MX > casadi::OptiNode::symvar ( const MX expr) const

Get symbols present in expression

Definition at line 981 of file optistack_internal.cpp.

981  {
982  return sort(MX::symvar(expr));
983 }

References casadi::MX::symvar().

◆ symvar() [3/3]

std::vector< MX > casadi::OptiNode::symvar ( const MX expr,
VariableType  type 
) const

Get symbols present in expression

Definition at line 1228 of file optistack_internal.cpp.

1228  {
1229  std::vector<MX> ret;
1230  for (const auto& d : symvar(expr)) {
1231  if (meta(d).type==type) ret.push_back(d);
1232  }
1233 
1234  return ret;
1235 }

References symvar().

◆ to_function()

Function casadi::OptiNode::to_function ( const std::string &  name,
const std::vector< MX > &  args,
const std::vector< MX > &  res,
const std::vector< std::string > &  name_in,
const std::vector< std::string > &  name_out,
const Dict opts 
)

Extra doc: https://github.com/casadi/casadi/wiki/L_174

Definition at line 1649 of file optistack_internal.cpp.

1653  {
1654  if (problem_dirty()) return baked_copy().to_function(name, args, res, name_in, name_out, opts);
1655 
1656  Function solver = solver_construct(false);
1657 
1658  // Get initial guess and parameter values
1659  std::vector<MX> x0, p, lam_g;
1663 
1664  casadi_int k = 0;
1665  for (const auto& a : args) {
1666  casadi_assert(a.is_valid_input(), "Argument " + str(k) + " is not purely symbolic.");
1667  k++;
1668  for (const auto& prim : a.primitives()) {
1669  if (!symbol_active_[meta(prim).count]) continue;
1670  casadi_int i = meta(prim).active_i;
1671  if (meta(prim).type==OPTI_VAR) {
1672  x0.at(i) = prim;
1673  } else if (meta(prim).type==OPTI_PAR) {
1674  p.at(i) = prim;
1675  } else if (meta(prim).type==OPTI_DUAL_G) {
1676  lam_g.at(i) = prim;
1677  } else {
1678  casadi_error("Unknown");
1679  }
1680  }
1681  }
1682  MXDict arg;
1683  arg["p"] = veccat(p);
1684 
1685  // Evaluate bounds for given parameter values
1686  MXDict r = bounds_(arg);
1687  arg["x0"] = veccat(x0);
1688  arg["lam_g0"] = veccat(lam_g);
1689  arg["lbg"] = r["lbg"];
1690  arg["ubg"] = r["ubg"];
1691 
1692  r = solver(arg);
1693 
1694  std::vector<MX> helper_in = {veccat(active_symvar(OPTI_VAR)),
1695  veccat(active_symvar(OPTI_PAR)),
1696  veccat(active_symvar(OPTI_DUAL_G))};
1697  Function helper("helper", helper_in, {res});
1698 
1699  std::vector<MX> arg_in = helper(std::vector<MX>{r.at("x"), arg["p"], r.at("lam_g")});
1700 
1701  return Function(name, args, arg_in, name_in, name_out, opts);
1702 
1703 }
MX lam_g() const
Get dual variables as a symbolic column vector.
void solver(const std::string &solver, const Dict &plugin_options=Dict(), const Dict &solver_options=Dict())
Solver.
Function to_function(const std::string &name, const std::vector< MX > &args, const std::vector< MX > &res, const Dict &opts=Dict())
Create a CasADi Function from the Opti solver.
Definition: optistack.cpp:435
void assign_vector(const std::vector< S > &s, std::vector< D > &d)

References casadi::MetaVar::active_i, active_symvar(), active_values(), arg(), casadi::assign_vector(), baked_copy(), casadi::MX::is_valid_input(), lam_g(), casadi::OPTI_DUAL_G, casadi::OPTI_PAR, casadi::OPTI_VAR, p(), casadi::MX::primitives(), problem_dirty(), res(), solver(), solver_construct(), casadi::str(), and casadi::Opti::to_function().

◆ ubg()

MX casadi::OptiNode::ubg ( ) const
inline

Definition at line 270 of file optistack_internal.hpp.

270  {
271  if (problem_dirty()) return baked_copy().ubg();
272  return bounds_unscaled_ubg_;
273  }
MX ubg() const
Definition: optistack.cpp:374

Referenced by show_infeasibilities().

◆ update_user_dict()

void casadi::OptiNode::update_user_dict ( const MX m,
const Dict meta 
)

Definition at line 571 of file optistack_internal.cpp.

571  {
572  if (has_con(m)) {
573  MetaCon m_update = get_meta_con(m);
574  MetaVar m_update2 = get_meta(m_update.dual_canon);
575  for (const auto & it : meta) {
576  m_update.extra[it.first] = it.second;
577  m_update2.extra[it.first] = it.second;
578  }
579  set_meta_con(m, m_update);
580  set_meta(m_update.dual_canon, m_update2);
581  } else {
582  for (const auto & s : MX::symvar(m)) {
583  MetaVar m_update = get_meta(s);
584  for (const auto & it : meta)
585  m_update.extra[it.first] = it.second;
586  set_meta(s, m_update);
587  }
588  }
589 }
MetaCon get_meta_con(const MX &m) const
Get meta-data of symbol (for internal use only)
MetaVar get_meta(const MX &m) const
Get meta-data of symbol (for internal use only)

References casadi::MetaCon::dual_canon, casadi::MetaCon::extra, casadi::MetaVar::extra, get_meta(), get_meta_con(), set_meta(), set_meta_con(), and casadi::MX::symvar().

Referenced by subject_to().

◆ user_dict()

Dict casadi::OptiNode::user_dict ( const MX m) const

Definition at line 591 of file optistack_internal.cpp.

591  {
592  if (has_con(m)) {
593  MetaCon meta = get_meta_con(m);
594  return meta.extra;
595  } else {
596  MetaVar meta = get_meta(m);
597  return meta.extra;
598  }
599 }

References casadi::MetaCon::extra, casadi::MetaVar::extra, get_meta(), and get_meta_con().

◆ value() [1/3]

DM casadi::OptiNode::value ( const DM x,
const std::vector< MX > &  values = std::vector<MX>(),
bool  scaled = false 
) const
inline

Obtain value of expression at the current value

Definition at line 121 of file optistack_internal.hpp.

122  { return x; }

◆ value() [2/3]

DM casadi::OptiNode::value ( const MX x,
const std::vector< MX > &  values = std::vector<MX>(),
bool  scaled = false 
) const

Obtain value of expression at the current value

Definition at line 1398 of file optistack_internal.cpp.

1398  {
1399  std::vector<MX> x = symvar(expr, OPTI_VAR);
1400  std::vector<MX> p = symvar(expr, OPTI_PAR);
1401  std::vector<MX> lam = symvar(expr, OPTI_DUAL_G);
1402 
1403  Function helper = Function("helper", std::vector<MX>{veccat(x), veccat(p), veccat(lam)}, {expr});
1404  if (helper.has_free())
1405  casadi_error("This expression has symbols that are not defined "
1406  "within Opti using variable/parameter.");
1407 
1408  std::map<VariableType, std::map<casadi_int, MX> > temp;
1409  temp[OPTI_DUAL_G] = std::map<casadi_int, MX>();
1410  for (const auto& v : values) {
1411  casadi_assert_dev(v.is_op(OP_EQ));
1412  casadi_int i = meta(v.dep(1)).i;
1413  casadi_assert_dev(v.dep(0).is_constant());
1414  temp[meta(v.dep(1)).type][i] = v.dep(0);
1415  }
1416 
1417  bool undecided_vars = false;
1418  std::vector<DM> x_num;
1419  for (const auto& e : x) {
1420  casadi_int i = meta(e).i;
1421  x_num.push_back(store_latest_.at(OPTI_VAR).at(i));
1422  undecided_vars |= override_num(temp[OPTI_VAR], x_num, i);
1423  if (scaled) {
1424  x_num.back() = x_num.back()/store_linear_scale_.at(OPTI_VAR)[meta(e).i] -
1425  store_linear_scale_offset_.at(OPTI_VAR)[meta(e).i];
1426  }
1427  }
1428 
1429  std::vector<DM> lam_num;
1430  for (const auto& e : lam) {
1431  casadi_int i = meta(e).i;
1432  casadi_assert(i<store_latest_.at(OPTI_DUAL_G).size(),
1433  "This expression has a dual for a constraint that is not given to Opti:\n" +
1434  describe(e, 1));
1435  lam_num.push_back(store_latest_.at(OPTI_DUAL_G).at(i));
1436  undecided_vars |= override_num(temp[OPTI_DUAL_G], lam_num, i);
1437  }
1438 
1439  std::vector<DM> p_num;
1440  for (const auto& e : p) {
1441  casadi_int i = meta(e).i;
1442  p_num.push_back(store_initial_.at(OPTI_PAR).at(i));
1443  override_num(temp[OPTI_PAR], p_num, i);
1444  casadi_assert(p_num.back().is_regular(),
1445  "This expression depends on a parameter with unset value:\n"+
1446  describe(e, 1));
1447  }
1448 
1449  if (undecided_vars) {
1450  assert_solved();
1451  for (const auto& e : x)
1452  casadi_assert(symbol_active_[meta(e).count],
1453  "This expression has symbols that do not appear in the constraints and objective:\n" +
1454  describe(e, 1));
1455  for (const auto& e : lam)
1456  casadi_assert(symbol_active_[meta(e).count],
1457  "This expression has a dual for a constraint that is not given to Opti:\n" +
1458  describe(e, 1));
1459  }
1460 
1461  std::vector<DM> arg = helper(std::vector<DM>{veccat(x_num), veccat(p_num), veccat(lam_num)});
1462  return arg[0];
1463 }
bool override_num(const std::map< casadi_int, MX > &temp, std::vector< DM > &num, casadi_int i)
VariableType type
Definition: optistack.hpp:529

References arg(), assert_solved(), describe(), casadi::Function::has_free(), casadi::MetaVar::i, casadi::OP_EQ, casadi::OPTI_DUAL_G, casadi::OPTI_PAR, casadi::OPTI_VAR, casadi::override_num(), p(), symvar(), casadi::MetaVar::type, and x().

Referenced by show_infeasibilities().

◆ value() [3/3]

DM casadi::OptiNode::value ( const SX x,
const std::vector< MX > &  values = std::vector<MX>(),
bool  scaled = false 
) const
inline

Obtain value of expression at the current value

Definition at line 123 of file optistack_internal.hpp.

124  {
125  return DM::nan(x.sparsity());
126  }
const Sparsity & sparsity() const
Get the sparsity pattern.
Definition: mx.cpp:592

References casadi::Matrix< double >::nan(), and casadi::Matrix< Scalar >::sparsity().

◆ value_parameters()

std::vector< MX > casadi::OptiNode::value_parameters ( ) const

Definition at line 715 of file optistack_internal.cpp.

715  {
716  std::vector<MX> ret;
717  for (const auto& e : symvar()) {
718  if (meta(e).type==OPTI_PAR)
719  ret.push_back(e==store_initial_.at(meta(e).type)[meta(e).i]);
720  }
721  return ret;
722 }

References casadi::OPTI_PAR, and symvar().

◆ value_variables()

std::vector< MX > casadi::OptiNode::value_variables ( ) const

Definition at line 706 of file optistack_internal.cpp.

706  {
707  std::vector<MX> ret;
708  for (const auto& e : symvar()) {
709  if (meta(e).type==OPTI_VAR)
710  ret.push_back(e==store_latest_.at(meta(e).type)[meta(e).i]);
711  }
712  return ret;
713 }

References casadi::OPTI_VAR, and symvar().

◆ variable() [1/3]

MX casadi::OptiNode::variable ( casadi_int  n = 1,
casadi_int  m = 1,
const std::string &  attribute = "full" 
)

Definition at line 275 of file optistack_internal.cpp.

275  {
276 
277  // Prepare metadata
278  MetaVar meta_data;
279  meta_data.attribute = attribute;
280  meta_data.n = n;
281  meta_data.m = m;
282  meta_data.type = OPTI_VAR;
283  meta_data.count = count_++;
284  meta_data.i = count_var_++;
285  meta_data.domain = OPTI_DOMAIN_REAL;
286 
287  MX symbol, ret;
288 
289  if (attribute=="symmetric") {
290  casadi_assert(n==m, "You specified attribute 'symmetric', "
291  "while matrix is not even square, but " + str(n) + "-by-" + str(m) + ".");
292  symbol = MX::sym(name_prefix() + "x_" + str(count_var_), n*(n+1)/2);
293  ret = tril2symm(MX(Sparsity::lower(n), symbol));
294  } else if (attribute=="full") {
295  symbol = MX::sym(name_prefix() + "x_" + str(count_var_), n, m);
296  ret = symbol;
297  } else {
298  casadi_error("Unknown attribute '" + attribute + "'. Choose from 'full' or 'symmetric'.");
299  }
300 
301  // Store the symbol; preventing it from going ut of scope
302  symbols_.push_back(symbol);
303  store_initial_[OPTI_VAR].push_back(DM::zeros(symbol.sparsity()));
304  store_latest_[OPTI_VAR].push_back(DM::nan(symbol.sparsity()));
305  store_linear_scale_[OPTI_VAR].push_back(DM::ones(symbol.sparsity()));
306  store_linear_scale_offset_[OPTI_VAR].push_back(DM::zeros(symbol.sparsity()));
307 
308  set_meta(symbol, meta_data);
309  return ret;
310 }
static Sparsity lower(casadi_int n)
Create a lower triangular square sparsity pattern *.
Definition: sparsity.cpp:1049

References casadi::MetaVar::attribute, casadi::MetaVar::count, casadi::MetaVar::domain, casadi::MetaVar::i, casadi::Sparsity::lower(), casadi::MetaVar::m, casadi::MetaVar::n, casadi::Matrix< double >::nan(), casadi::GenericMatrix< MatType >::ones(), casadi::OPTI_DOMAIN_REAL, casadi::OPTI_VAR, set_meta(), casadi::MX::sparsity(), casadi::str(), casadi::GenericMatrix< MX >::sym(), casadi::MetaVar::type, and casadi::GenericMatrix< MatType >::zeros().

◆ variable() [2/3]

MX casadi::OptiNode::variable ( const MX symbol,
const std::string &  attribute = "full" 
)

Definition at line 312 of file optistack_internal.cpp.

312  {
313 
314  // Prepare metadata
315  MetaVar meta_data;
316  meta_data.attribute = attribute;
317  meta_data.n = symbol.size1();
318  meta_data.m = symbol.size2();
319  meta_data.type = OPTI_VAR;
320  meta_data.count = count_++;
321  meta_data.i = count_var_++;
322 
323  // Store the symbol; preventing it from going ut of scope
324  symbols_.push_back(symbol);
325  store_initial_[OPTI_VAR].push_back(DM::zeros(symbol.sparsity()));
326  store_latest_[OPTI_VAR].push_back(DM::nan(symbol.sparsity()));
327  store_linear_scale_[OPTI_VAR].push_back(DM::ones(symbol.sparsity()));
328  store_linear_scale_offset_[OPTI_VAR].push_back(DM::zeros(symbol.sparsity()));
329 
330  set_meta(symbol, meta_data);
331  return symbol;
332 }

References casadi::MetaVar::attribute, casadi::MetaVar::count, casadi::MetaVar::i, casadi::MetaVar::m, casadi::MetaVar::n, casadi::Matrix< double >::nan(), casadi::GenericMatrix< MatType >::ones(), casadi::OPTI_VAR, set_meta(), casadi::GenericMatrix< MatType >::size1(), casadi::GenericMatrix< MatType >::size2(), casadi::MX::sparsity(), casadi::MetaVar::type, and casadi::GenericMatrix< MatType >::zeros().

◆ variable() [3/3]

MX casadi::OptiNode::variable ( const Sparsity sp,
const std::string &  attribute = "full" 
)

Definition at line 334 of file optistack_internal.cpp.

334  {
335 
336  // Prepare metadata
337  MetaVar meta_data;
338  meta_data.attribute = attribute;
339  meta_data.n = sp.size1();
340  meta_data.m = sp.size2();
341  meta_data.type = OPTI_VAR;
342  meta_data.count = count_++;
343  meta_data.i = count_var_++;
344 
345  MX symbol = MX::sym(name_prefix() + "x_" + str(count_var_), sp);
346 
347  // Store the symbol; preventing it from going ut of scope
348  symbols_.push_back(symbol);
349  store_initial_[OPTI_VAR].push_back(DM::zeros(symbol.sparsity()));
350  store_latest_[OPTI_VAR].push_back(DM::nan(symbol.sparsity()));
351  store_linear_scale_[OPTI_VAR].push_back(DM::ones(symbol.sparsity()));
352  store_linear_scale_offset_[OPTI_VAR].push_back(DM::zeros(symbol.sparsity()));
353 
354  set_meta(symbol, meta_data);
355  return symbol;
356 }

References casadi::MetaVar::attribute, casadi::MetaVar::count, casadi::MetaVar::i, casadi::MetaVar::m, casadi::MetaVar::n, casadi::Matrix< double >::nan(), casadi::GenericMatrix< MatType >::ones(), casadi::OPTI_VAR, set_meta(), casadi::Sparsity::size1(), casadi::Sparsity::size2(), casadi::MX::sparsity(), casadi::str(), casadi::GenericMatrix< MX >::sym(), casadi::MetaVar::type, and casadi::GenericMatrix< MatType >::zeros().

◆ weak()

Extra doc: https://github.com/casadi/casadi/wiki/L_1ai

Definition at line 67 of file generic_shared_internal.hpp.

191  {
192  if (weak_ref_==nullptr) {
193  weak_ref_ = new GenericWeakRef<Shared, Internal>(static_cast<Internal*>(this));
194  }
195  return weak_ref_;
196  }

◆ x()

MX casadi::OptiNode::x ( ) const
inline

Definition at line 242 of file optistack_internal.hpp.

242  {
243  if (problem_dirty()) return baked_copy().x();
244  return nlp_.at("x");
245  }
MX x() const
Get all (scalarised) decision variables as a symbolic column vector.
Definition: optistack.cpp:334

Referenced by bake(), set_domain(), set_initial(), set_linear_scale(), set_value(), value(), and x_lookup().

◆ x_describe()

std::string casadi::OptiNode::x_describe ( casadi_int  i,
const Dict opts = Dict() 
) const

Definition at line 219 of file optistack_internal.cpp.

219  {
220  if (problem_dirty()) return baked_copy().x_describe(i, opts);
221  MX symbol = x_lookup(i);
222  casadi_int local_i = i-meta(symbol).start + GlobalOptions::start_index;
223  std::string description = describe(symbol, 0, opts);
224  if (symbol.numel()>1)
225  description += "\nAt nonzero " + str(local_i) + ".";
226  return description;
227 }
std::string x_describe(casadi_index i, const Dict &opts=Dict()) const
Definition: optistack.cpp:645
MX x_lookup(casadi_int i) const

References baked_copy(), describe(), casadi::description(), casadi::GenericMatrix< MatType >::numel(), problem_dirty(), casadi::IndexAbstraction::start, casadi::GlobalOptions::start_index, casadi::str(), casadi::OptiAdvanced::x_describe(), and x_lookup().

◆ x_linear_scale()

DM casadi::OptiNode::x_linear_scale ( ) const
inline

Definition at line 281 of file optistack_internal.hpp.

281  {
282  if (problem_dirty()) return baked_copy().x_linear_scale();
283  return DM(linear_scale_);
284  }
DM x_linear_scale() const
Definition: optistack.cpp:391

Referenced by scale_helper().

◆ x_linear_scale_offset()

DM casadi::OptiNode::x_linear_scale_offset ( ) const
inline

Definition at line 285 of file optistack_internal.hpp.

285  {
287  return DM(linear_scale_offset_);
288  }
DM x_linear_scale_offset() const
Definition: optistack.cpp:399

Referenced by scale_helper().

◆ x_lookup()

MX casadi::OptiNode::x_lookup ( casadi_int  i) const

Definition at line 229 of file optistack_internal.cpp.

229  {
230  if (problem_dirty()) return baked_copy().x_lookup(i);
231  casadi_assert_dev(i>=0);
232  casadi_assert_dev(i<nx());
233  std::vector<MX> x = active_symvar(OPTI_VAR);
234  for (const auto& e : x) {
235  const MetaVar& m = meta(e);
236  if (i>=m.start && i<m.stop) return e;
237  }
238  casadi_error("Internal error");
239  return MX();
240 }
MX x_lookup(casadi_index i) const
Definition: optistack.cpp:605

References active_symvar(), baked_copy(), nx(), casadi::OPTI_VAR, problem_dirty(), casadi::IndexAbstraction::start, casadi::IndexAbstraction::stop, x(), and casadi::OptiAdvanced::x_lookup().

Referenced by x_describe().

Friends And Related Function Documentation

◆ InternalOptiCallback

friend class InternalOptiCallback
friend

Definition at line 57 of file optistack_internal.hpp.

Referenced by solve_prepare(), and solver_construct().

Member Data Documentation

◆ problem_dirty_

bool casadi::OptiNode::problem_dirty_

Definition at line 320 of file optistack_internal.hpp.

◆ solved_

bool casadi::OptiNode::solved_

Definition at line 328 of file optistack_internal.hpp.

◆ solver_dirty_

bool casadi::OptiNode::solver_dirty_

Definition at line 324 of file optistack_internal.hpp.


The documentation for this class was generated from the following files: